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During the past few years there has béen a rapid development. of

the field called management Science (ﬁot to be confused with the older

tradition of "scientific management" in tbe sense of time and motion
studies, etc.);_ Manég@mmm:science has made major cbntributions'to

the solution of problems involving the optimal allocation of limited.

~ resources, decision-making under conditions of uncertainty, and decision

processes involving two or more stages (as in an administratiVé hiérarchy); -
The central concepts involved can be stated in concise mathematical terms:
and can be extended to a very wide range of applied fields in addition

to those in which successes have already been scored (business management,

military operations research, traffic engineering, control systems en-
. % ’

-

gineering, etc.).
College administrators must deal with problems of allocating limited_'
resources and must continually make decisions in the face of uhcértainty
as to enrollments, losses of faculty, future.budget limitations, develqp-
ments in secondary schools and changing job opportunitiés for éollége
graduates. The specific objectives of this project are:
1. To select a number of problems that are faced continuously
by department chairmen, deans and college presidents and are
of great importéﬁce to thé efficiency with which our ed-

ucational resources are used;

FORMULATION OF MANAGEMENT SCIENCE MODELS FOR 1
SELECTED PROBLEMS OF COLLEGE ADMINISTRATION
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2. To state the essential features of these problems in

.mathematical form and identify their mathematical
structures with management science mbdels used in
other fields; and
3. To apply the appropriate solution methods to synthetic
or illustrative models of academic departments, divisioné,

or small cblleges.

I. The Problems Considered

A. General Statement

After twelve years as head of a large academic department and after
many, many conversations with faculty members, chairmen and deans in
various colleges and universities, it appeags to the principal investi-
gator that academic administration is making little use of modern
scientific appfoaches L0 resource allocétion and optimal decision
processes.,l/ Few problems are specified with sufficieﬁt clarity and
rigor, and with sufficient attention to the definition of the relevant
variables, that two objective observers could take the problem as de-
scribed and arrive at the same quantitative decision.

This is not to say that all aspects of academicllife are or should
be subject to quantification. A good college faculty includes proud,

sensitive and creative people. However, faculties, and their chairmen,

1/ This is something quite different from automation and computerization
of recording, accounting and reporting activities, as will be seen
shortly. - - '
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deans and presidents, must make many decisions which affect in quantita-
tiye ways the "inputs" and "outputs" of the educational processes in
which they are engaged. |

Almost without éxception, college presidents are keenly aware of
pressures from deans and faculty members to do more and better things--
things which cannot be done with the fesources avﬁilable.‘ To an
economist, this involves the classical economic problem of allocating
limited resources among comneting uses.

Economists often view decision makers as using price systems to
aid in the management of their enterpriées. These concepts are seldom
explicitly used.by educational administrators. The inputs of educational
processes are measured and priced although few colleges, to the best of
our knowledge, measure or price them in ways that aid educational'decisionf
making. The measurement and pricing procedures used are mofe commonly
designed only to insure that the college stays within its bﬁéget for
the year. Recent developments in management science have'eﬁphasized the
concept of a "shadow price" which does not neceséarily equal the market
price of a rescurce but which shows the amount by which the‘vaiue of out-
put of an enterprise could be increased if one additional unit of a
particular scarce resource were made available.

Some of the "outputs" of colleges are not explicitly priced by
college faculty members and administrators. Some of them do have value,
however, in terms of the greater earning power and‘leadefship capabilities
of college grédﬁates. In recent years, T. W. Schultz (18), Gary Becker ( 2),

and others have made progress in quantifying the vocational value as
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contribution to career income resulting from a college education=--this -

is, in a sense, the value of one educatiocnal output to the studer.t

. whé receives the education.

b : The value of a particular output may be estiméted at different
levels by different faculty members or administrators. However, the ;
] v' assignment of illuétrative prices to the various outputs at least
challenges othefs to state their own judgment as to relative prices and

1 ' their reasons for them. It may turn out that some decisions are not

sensitive to the differences between alternative sets of prices which /

two different outside observers as expert panels would regard as ;
reasonable.
This project has not been concerned with improving estimates of

prices of educational inputs and outputs. We have drawn on other re-

i,
2
k).
e
o
28

search both here and elsewhere ior estimated or illustrative prices.

o4
<

We are concerned with the procedures for making reproducible decisions

which are in som® sense optimal given the estimated or measured prices

of inputs and cutputs and quantitatively specified budget personnel 1
4 ' and space constraints. Knowledge that procedures exist for making good ~ 4

or even optimal use of such data may do more than anything else to

stimulate improvements in the accuracy and relevance of the data col-

lected in the future.

sieoreg 403 23,3
PO Eo AR s

No one knows by how much the efficiency of college education in the ‘

United States could be increased. Given a set of institutions which have

?f | prided themselves on the intangibility of their product, research focused :

Ty upon efficient resource allocation and improved decision processes with

3 respect to quantitative aspects of college administration should have




»~ bthers have formulated planning models of several national educational

e e R 4

an ultimate payoff running into many hundreds of millions of dollars.

This is not, of course, the patented payoff of aﬁy one project but the
cumulative payoff of an "optimizing' approach and attitude by faculty
members and administrators becoming gradually more prevalent over a period

of.years.

4

B. References to Related Work

Some progress. has been made in the general area of the economics of
education and a good deal of progress has been made in the tools needed
for making optimal decisions. Becker (2 ), T. W. Schultz (18) and others

have attempted to estimate the value to the holders and to society of

various types of education. Adelman ( 1), Bowles ( 4), Stone (19), and

systems. Dantzig and Wolfe ( 8) have developed an algorithm which under

some circumstances can be used toc -compute optimum solutions to decision=-

making problems of large organizations. Kornai and Liptak (13) have dealt

with the same problem and have shown the analogy between decentralized

decision-making and certain matrix games. Day ( 9) has made extensive use

of a recursive programming model in which the levels at which activities
can be carried on in Year t are dependent upon the levels attained in the
preceding year. _ :
Iowa State University economists have also beén active in this area.
Winkelmann (20) has constructed a model for allocating faculty members
among various teaching and research assignments. Plessner, Fox and Sanyal (17)
have constructed for an individual department a dymamic programmiﬁg policy
model which determines, given the size and characteristics of the initial

faculty, initial enrollments, and input and output prices, the optimal

=5 - ' E

-tk

s el S A A S s S R s 3 S R e T i i i D S s e e




admissions andoutput pattern for a four-year planning period. McCamley (15)
has shown Epat the results of Kornai and Liptak (13) and Dantzig and

Wolfe ( 8) may be combined %o provide the basis for decision-making pro-
cedures that could be adoptad by educational institutions. Fox and
Sengupta (10) have reviewed much of the extant literature dealing with
educational planning and have indicated some of the features that should

be included in models of educational departments,

C. Specific Models Treated in This Report

For each of a number of major types of problems of college administration

our approach includes (1) a logical formulation, (2) a mathematical form-

ulation based on management science concepts, (3) the construction of a
non-trivial example, based on academic organization and staffing patterns,
teaching loads, salary levels, and the like which are within the range

of current academic experience in the United States and (4) the com-
pletion of one or more sequencés of calculations showi.ag how management
science techniques wouldimprove the results of resource ailocati
decision-making process over specified conventional or traditional pro-

cedures.

&
In our project proposal we listed 'some of the problems that will most

likely be conceptualized" as:
a. The use of a linear programming model to allocate a stipu-
lated faculty among courses f(and between courses, research,
and administrative activities) for a single year, given pro-
jected enrollments and desire for courses on the part of students;
b. The use of a recursive programming model to follow successive

decisions of a department chairman or faculty over a period of years;

-6 -
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c¢. The modeling of a two-level decision-making process;

d. Estimating the relative contributions of different de-

cizion makers to an allocation procedure; and

e. The use of étochastic programming to estimate the value of

certain types of information.

As it turned out we went quite deeply into some wroblems and less
deeply or not at all into’others. The total amount of effort put into
the project and directly-related research far exceeded the amount pro-
vided by the project contract ($7,500). 2/

In this report we will emphasize three approaches or models which

should prove to be useful aids to resource allocation and other major

decision processes in educational instituticas.

e o

2/ The principal disbursements from the contract funds were salaries for
Francis McCamley (6 months) and Yakir Plessner (3 months). Plessner,
Fox, Von Hohenbalken and Sengupta did some reiated research on Iowa ‘

State University funds, and McCamley did related research for nine S 4
additional months while supported on an NDEA fellowship. 4
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IX. Models for Allocating Given Staff Resources
Among Fixed Teaching and Research Comitments
: in a Single Year

The first problem to be discussed is that of finding the best al-
location of given staff resources among fixed teaching and research com-

mivments. This problem could arise in situations in which the college
4 dean or some other offigial has specified the number of faculty members
which a department may employ and in which enrollment and other consid-
erations have specified the courses (and numbers of sections) that must
be taught and the research projects that must be completed.

The cbjectives or goals of the department chairmen help define
i what the best allocation is. For example, Winkelmann (20) has suggested

that department chairmen might attempt to maximize their departments’

contribution to national income. Hamelman (l1) suggests minimizing

the proportion of students failing--i.e., failing despite conscientious

effort.

A. The Basic Model

1 In one of its simplest forms the problem of allocating staff mem-

bers among alternative tasks can lead to a model which is formally ident-

ical with the transportation model. As a result there exist many ways ~ :

by PR s b iy

of obtaining numerical solutions to the problem. Such a formulation also

Bog v S

¥ 53l Ry

has the advantage that the optimum solutions can easily be restricted to

3 integers.~

; 3/ 1f both the numbers of units of resources available and the numbers
. of units required for each course are integers, one of the optimal ;

solutions will always consist only of integers.
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In order to use the transportation type of model certain require-

‘ments must be met by the problem,

First, both the inputs (faculty time) and the input requirements
per course or research project must be measured in the same units. This
is a trivial requirement in most cases and can probably best be fulfilled
by adopting as the unit of measurement the amount of time required to
teach one section of one course. Teaching load per faculty member is
often measured in this manner anyway. Research inputs are sometimes
also measured in this manner too, especially when the time devoted to
research is measured in terms of the reduction of teaching loads from
that required by some full-time teaching load norm.,

Second, the total staff resources available must equal the amount
required to meet all of the departments' teaching and research commit-

ments. If the staff resources exceed the amount needed to meet all

(1]

commitments this second reqguirement may be met by ad‘iﬁg artificial
commitments (i.e., units of free time) to take up the slack. If the
staff resources are less than the amount required, there is no feasible
allocation and either the commitments or the number of staff members
must be adjusted.

Third, any staff member must be capable of teaching any section
of any course that must be taught, or of completing any portion of any
research project. This does not exclude the possibility that some staff

members might do quite badly in some assignments. (1f the effectiveness

Ly G AT AT S TS b s St et ki bt e R A T SN 2% . . .
il B A P S o e S B i B L i e 1 0 B B e e e
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of faculty member i in course j is judged to be extremely low, this
assignment will rarely appear in the optimal solution.)

Fourtii, the contribution which a particular staff membe: makes if

he teaches a particular course (or conducts a particular research pro-

ject) must be a homogeneous linear function only of the number of units
of time he devotes to that course (or research pfojéct). It must not
depend upon the amount of his time allocated to other courses (or pro-
}jects) nor upon the allocationé of other staff members' time. in other
words, if the value of one section of course j taught by faculty member
i is rated at 10 units, the total value of two sections of course j
taught by faculty member i is rated at 20 units, of three sections at
30 units, and so onaﬁ/

The mathematical model is presented in the appendix. This ﬁodel
requires three types of information.

The first type of information requiréd is a list of faculty mem-
bers and the amount of teaching and research inputs available from each
of them.

The secoﬁd}type of information required is a list of courses which
must be taught (and research projects which must be completed) and the

5/

number of units of input required for each.=

4/ More complicated models could be devised to take account of favorable
effects of variety. Or, we could impose upper limits on the number
of units of a faculty member's time that could be assigned to any one
course. But in the models described in this report, we assume that
all of a faculty member's time could be assigned to a single course
without diminution in his '"value per section."

The number of units of inputs required per course usually equals
the number of sections to be taught.




The third type of information required is a set of objective func-

tion weights. These weights should indicate for the ith staff member
and for the jth task the contribution that would be made tc the depart-
ments' objectives if the ith staff member suppliéd one unit of input for
the jth task. 1In total, n *« m of these weights are required, where n is
the numbér of faculty members and m is the number of different tasks.
The information required for this model could be presented in the

following form:

11 Clg * s s o v o oo oo Cp 1
o1 Cog ¢ o s s o s s e oo Coo a,
c Chg * ® c e e e Cop a
bl b2 bm
The-ai's indicate the amounts of inputs available from the various
faculty members. The bj's indicate the amount of inputs required by each
6/

of the various tasks. The cij's are the objective function weights.—

6/ 1In the mathematical programming liitarature, "objective function" is
a technical term denoting a combination of activity levels and weights
which is to be maximized. '"Objective' is used in the sense of ''goal"
or "target." The weights included in the objective function might
be market prices in some applications; in the faculty assignment prob-
lem, they would more likely represent the judgments of a departmen
chairman.

- 11 -
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For small problems such & model may be solved by hand. The solu-

tion procedure consists of two stages. During the firét stage a feas-
ible solution is obta&ned. During.the second stage an optimal solution
is obtained.

.The first stage consists of a single step which is repeated uﬁtil
feasibility is obtained. Choose the largéét of the c,,.'s for which

ij

both bj and a, are greater than zero. If this element is crs; set x

i rs

eqhal to the smaller of the current values of br and a . Update the
values of b_ and a_ by subtracting x _ from both. This step is repeated
until all bj's and ai's are equal to zero.

puring the second stage'ﬁhe‘solution is improved until an optimum
solution is obtained. The only way to improve the solutién'is to in-
crease some allocation vector (one of the xij'g) f?om a zero level'td
a positive level. The first step involves determining which activity 1eve1H 
to increase. Usually most of the'activity levels w}ll be zero and in
addition tﬁere will often be several ways of increasing any giveh activ-
ity level. 1In ;uch a case the easiest way to determine which activity
level to increase is to first solve the dual of ﬁhe.model.zj The dual
variables uy (tﬁe marginal value of a unit of input supplied by the iﬁh

staff member) and v, (the marginal value of a unit of input demanded by

the jth task) must satisfy the relationship

1/ For a discassion of the meaning of the "dual" of a linear program-
ming model, see Dorfman, R., P. Samuelson and R. Solow, Linear Pro-
gramming and Economic Analysis (McGraw-Hill: New York), 1958, pp.
100-104 and 122-127. _

- 12 -




if xij is greater than zero. This leads to a system of n +m-1 (or

fewer) equations which can easily be solved for the ui's and vj'a.

Those xij's for which cij -u tv, is greater than zero are candidates
for increases in activity levels. The X4 to increase first is the one
i - - ‘

for which cij u, +‘vj is the largest.
The next step involves determining how to increase the activity

4 level. In order to 1ncvéase the level of any activity (say xfs) it is

necessary to decrease the levels of at least two other activities and

increase the level of at least one other activity. ' The method of changing...l

g the level of activity X o should be chosen so that

Mo

& bAx,.
1 j=1 *1j 13

is maximized subject to

oy Axgy = 0 i=1y 2 ey m
i§1 AxiJ = 0 is= 1, 2, esey N
f and
3 - | = =
Ax_ 1, x,, +8x, 0 t=1,2 cosm

1, 2, eee5 m .

-l_» )
il

Once the best way of changing X g is determined, X .g is set equal to the

largest value permitted by that method of changing the activity level.

- 13 -




The second stage steps are repeatied until at some.Point'

for S i=1,2, cesy N

j = 1" 2’ qoo,bm .

At that point an optimum solution has been obtained.

A couple of exémples may serve to claxify some of the ideas dis-

cussed above.

Consider an extremely small department which has two fééuity mem;'l
bers_each of whom supplies enough inputs for three sections pér quarter;
the department éffers only two distinct courses. Four sections of one
course and twe sections of the otﬁer must be taught ih a pafttcular
quarter. The information needed for the model cqhvbe auﬁm@riéed aé.
follows: -

Economic principles Theory of the firm

Faculty Member 1 10 €19 7

Faculty Member 2 €y

b,

Part of this information can be expressed as a set of equations,

as follows:




x21 + x22
"X12 "%92

The objective function to be maximized is

W ,10x11 + 7x12 + 6x,, + 8kyy

The first four equations can also be written in matrix equhtion

form as?

The complete set of information can be displayed as in Table 1.

A unit of activity xll'assigns one unit of thg time of Faculty
Member 1 to Course 1l; a unit of activity X190 assigns one unit of Faculty
Member 1's time to Course 2; a unit of activity x,, assigns one unit of
Faculty Member 2's time to Course l; and a unit oflgctivity x99 assigns

one unit of Faculty Mémber 2's time to Course 2.
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Table 1. Faculty Allocation Model: Basic Infotmation

Activity levels (xij):

Possible'assignment
activities:

Ob jective function
weights (cij):

Availabilities: ai

Requirements: bj

Activities: Availabilitias

and

X

21 *22

-l

8 :! maximum

Initially limiting factors:

3 3|
-4 -2 :] |

3

L
N
oo oo
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' ]
gﬂi% . To obtain a feasible solution which will achieve a high value (but ]
- not necessarily the highest value) of the objective function W, we intro- f
duce the activities (and establish their levels) in the following order i
(Table 2). ]
At the end of the first step i
fp =3 Xy = 0 Xy =0, x, =0,
a, = o, a, = 3, . b1 = 1, b2 = 2, - é
At the end of the second step
X1 3, X190 = 0, X1 < 0, Xyg = 2,
a; = 0, a, = 1, b1 =1, b2 = 0,
At the end oi the third step
X1p =3 %y = 0 % =1, xp =2, '
3 = a = b =15b =0
All commitments are met and all of the availablé time is allocated, 80 :
Step 3 gives us our first feasible solution, 3
This solution can be written in matrix form as ;
1 o o 1| [3| [3 ]
‘ 0 1 1 0 2 3 |
-1 0 -1 0 1 -4
0 -1 0 -1 0 -2
®




pRaaidasan
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Table 2. Faculty Allocation Model: Steps Toward First Feasible Solution

—

Step Number:
0 1 2 3

Activity Introduced:

11 “‘zz %21

Units Assigned:
3 2 1

3 0 0 0

-b -4 o1 -1 0 -

. 10 8 6
X. . 30 16 6

2 .
Ze . x,. 30 46 52

- 18 -
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Because (a1 + aé) = (b1 +,b2), whenever we find a set of activities

which satisfies three of these restrictions exactly that same set will
also satisfy the fourth, We can therefore crop the fourth equation
(row) from the above set, and eliminate the column corresponding to

activity X199 which is not used in the feasible solution. We then have

simply
BB 0 0 3] 3
0 1 1 2 = 3], orax = r
-1 0 -1 1 -4
L. ’ — S el

To compute the dual of this last matrix equation, we write down

a new A matrix (call it 2) in which Column 1 is equal to Row 1 of the

A matrix, Column 2 to Row 2, and Column 3 to Row 3.§I We then write
1 0 -1 u, (10
0 1 0 u, = 8 , Bu = cC.
—9 1 -1_ _Yl_ ’ é_

This is the dual we require to test whether the first feasible solution

is also optimal.

We can solve for u by using the inverse matrix, B ~, as u = B c.

The inverse matrix turns out to be

8/ See Dorfman, Samuelson and Solow, op. cit., p.'101.
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from which

6= 8

8s 8

not .
We can/increase W = 10x11 + 7x12 + 6x21 + 8x22 = 52 by changing the

level of any Xy 50 so the first feasible solution is also thé‘dptimal

solution.




S Y TR et s e

It may be noted in passing that the dual also has an objective

function, which is to minimize

The minimum value of D is equal to the maximum value of W, Thus, in

the present case,

D . = 12(3) +8(3) +2(-4) +0(-2) , or
D, = 36+2-8+0 = 52 = W __ .

In the present small example, of course, we do not need all the
abpve parapherﬂalia to determine that the first solution is also optimal.
For what would happen if we increased activity X19 by one unit, from

0 to 1?

1. The added unit of xlz.is worth seven points (c12 = 7).

2. To get it, we must withdraw one urit of X1 worth ten points
(c11 = 10), leaving one section of Course 1 unassigned.
3. However, for the moment we have assigned three units of faculty -
time to Course 2, for which only two urits are needed, Thus, we with-
draw a unit of Faculty Member 2's time from Course 2, where it is worth
eight points, and assign it to Course 1, where it is worth only sik'
points. |

Thus, in order to increase the levél £ X190 by one unit we have had
to subtract 6ne unit from each of two other activities (x11 and xzz)

- 21 -
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and add one unit to a fourth activity (x21). After-all this rearrang-

ing, we find that

E
]

10(2) + 7(1) + 6(2) +8(l), or

W = 20+7 +12 +8 = 47,
The objective function has been altered in the amount
(clz-cll) + (czl-gzz) = (7-10) + (6-8) = -3 + (-2) = -5 .

When the numbers of faculty members and courses are considerably
larger than two and two, it i3 convenient to use standard ccmputerized
methods for determining the optimal solution and the shadow prices asso-
ciated with it. Iterative calculations, matrix inversions and the like
are carried on in the computer and the final solution is printed out,
along with other measures such as the shadow prices, which aid in inter-
preting the solution as such.

A slightly larger example may serveto illustrate the second stage
computations., Consider a department which has four faculty members each
of whom teaches nine sections per year or contributes equivalent inputs
to teaching and research assignments. It also offers six courses whick
during a given year it must offer at the rate of 9, 7, 6, 5, 4, and 3
sections per year. It also is conducting two small research projects
which require respectively two units of faculty inputs and one unit of

faculty input. It will be assumed that scheduling of sections among

- 22 -




quarters and hours of the day is sufficiently flexible that the alldca-
tion for a whole year can be obtained withput worrying about which quar-
ter a particular section will be taught,

The information relevant to fhis problem iz given in compact form
in Table 3. Table 4 spells out in detail the 32 possibie activities.
One unit ofwgctivity xij assigns one unit of the time of Faculty Member
i to Course j. This subtracts one unit from a, and adds one unit to bj'
The ai's are given poSitive signs; they are stocks or surpluses to be

drawn down ultimately to zero. The bj's are given negative signs; they

are needs or deficits to be satisfied or made good until ultimately no
deficits remain. In Table 4, all the elements in the 12 by 32 matrix
which are not either 1 or -1 are zero.

Starting from Table 4, we can arrive at a first feasible solution
as before, assigning the time of each faculty member i to tasks j for
which his cij's are relatively high. The steps are shown in Table‘S.
We have not been meticulous about bringing the very highest cij's in
first, but have come fairly close to this. For example, b5 = 4, S0 |
only four units of saculty Member l's time can be assigned to activity

X155 which has the highest ¢,. of all (c15 = 15); we assign the other

ij
five units of Faculty Member 1l's time to activity 11, which is the sec-

ond most productive use of his time (c11 = 10). Activities X972 and X9 -
are the two best uses of Faculty Member 2 (c27 = 12 and Cyy = 8). We

assign five units of Faculty Member 3's time to activity Xq49 which is

- 23 - ' | - ;
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bis best use; however, his second most productive use, in Course 5
(c35 = 10), is no longer available as all four sections of Course 5 have
been allocated to Faculty Member 1. We therefore assign the last four

units of Faculty Member 3's time to activities x,, and x in which

36 31’
his productivity is rated at 9 and 7 points respectively. Faculty
Member 4, on this first round, is assigned to whatever tasks are left
ovaer, namely to activities X410 X43 and X8 in which his productivity
is rated at 5, 2 and 6 points reépectively.

Table 6 shows the first feasible solution in matrix equation
form, The solution is given by X1y = 5, Xy = 4, x22.= 7, Xpq = 2,
Xqp = 1,'x34 = 5, Xq6 = 3, X41 = 3, X3 = 5, X8 = l. The corresponding

dual solution (from Table 7) is given by u, = 15, u, = 12, u, = 12,

Y4

vg = 4.

10, v, = 5, v, = 4, Vq = 8, v, = 1, vg = o, Ve = 3, vy = 0 and

To obtain these values of the ui's and vj's, we note that each
of the ten rows of the matrix equation in Table 7 is itself an ordinary

algebraic equation:

Row 1: U, -vy = 10
Row 2: U -V = 15
Row 3: u, -~ v, = 8
Row &4 u, - vy = 12
Row 5: ug = v, = 7
Row 6¢ ug - v, = 11

- 28 -
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Row 7: uy - Ve = 9
Row 8: u, =~ vp < 5
Row 9: u, = vy = 2
Row 10: u, = Vg = 6

Thus, we have a set of ten equations in 12 unknowns; the ten equations
can be solved uniquely only if the values of two of the 12 unknowns

are zero. As each uy 2 0 and each vj 2 0, we can discover which two

of the unknowns are zero by the following reasonings
(1) The right-hand side of each equation: is positivej therefore,
the vj in each equation is smaller than the u, in that equation; hence,

>0, u,>0,u,>0andu > 0.

2 3 4
(2) From Rows 1 and 2 it is clear that 5 is smaller than vys

b |

hence, v, > 0.

{(3) From Rows 3 and 4 it is clear that \Z is smaller than Vo3
hence, v, > 0,

(4) From Rows 6 and 7 it is clear that v, is smaller than Vo’
hence, Ve > 0.

(5) From Rows 9 and 10, it is clear that vg is smaller than v3;
hence, v, > 0.

The remaining vj's two of which might have zero values are v,,
Vgs Vq and Vge We note the following additional points:
(6) From Row 2, Uy 2 15. Therefore,

i e o i R A b e R e




(7) From Rows 1 and 5, u, = 12, and

(8) From Rows 1 and 8, u, 2 10. Hence,

(9) From Row 6, v, 2 1, and

(10) From Row 10, vg 2 4, Therefore, only Vg and v, may have zero
values; Vg = 0 and v, = 0.

Given vy = 0, we find from Row 2 that u, = 15; then, from Row 1,
that vy = 5; from Row 5, that uy = 12; from Row 6, that v, = 1l; and
from Row 8, that u, = 10.

Given vq = 0, we find from Row 4 that u, = 12; from Row 3, that
v, = 4; from Row 9, that vy = 83 from Row 7, that Ve = 3; and from Row
10, that v, = 4. This completes the solution.

8

We next find that c33 -u, + v3 = 2 and c46 - u, +v, =1 so x33

3 3 3
will be increased. The best way to increase Xq4 involves increasing
Xq3 by one unit, decreasing X3 by one unit, increasing X1 by one unit,
and decreasing Xq1 by one unit.

A new dual solution is then computed. This indicates that X6
should be increésed. Aftexr increasing X6 by three units, the solution
(Table 8) is given by X1 = 5, X15 = 4, Xpy = 7, Xyq = 2, Xgq = 4,

=4, x,, =1, X6 = 3, and X8 = l. The corresponding

Xy = 0 X4

43
dual solution CTable 9) is u; = 15, u, = 12, ug = 14, u, = 10, v, = 5,
9/
V2 = 4’ V3 = 89 vl} = 3’ v5 = 0, v6 = 2’ v7 = 0, v8 = 40— At this pOint

9/ Table 9 can be written out as ten ordinary algebraic equations:
(footnote continued on page 35)
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cij = u, - vi for i=1, 2, 3, 4, and j =1, 2, 3, 4, 5, 6, 7, 8.

Thus, an optimal solution has been obtained. The resulting faculty

assignments are as follows:

Assignments (Units):

Faculty Course Research
Member i 2 3 4 5 6 7 8 a,
1 5 4 9
2 7 2 9
3 4 5 9
4 4 1 3 1 9
bj 9 7 5 5 4 3 2 1 36
4 8
The value of the objective function, W= % T «¢., x,., is 321 in
i=] j=1 1ij "1j

the optimal solution compared with 310 in the first feasible solution,

A. Some Technical Aspects of the Objective Function Weights (cij's)

The cij's in real situations would most likely be based on the

judgment of the department chairman. Once specified, they guide the

9/ (Continued from page 32)

. Row 1: u1 - v1 10
Row 2: u, - v = 15
. 1 5
Row 3: u2 - v2 - v7 = 8
Row 4 u2 = “12
Row 5 u3 - v3 = 6
Row O u, - v = 11
3 4
Row 7: u, - v 5
4 1
Row 8: u, - Vv 2
4 3
Row 9: u, - Vv 8
Row 10: 4 _ v6 6
w : u4 3

Again we have ten equations in 12 unknowns. By the same reasoning
as before we find that vg = 0 and vy = 0. We then solve the ten

equations for the ten remaining unknowns, obtaining the values listed
in the text.
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allocation process to an optimal solution. But the chairman's judg-

ment in specifying the cij's may be fallible. It is worth considering,
then, how sensitive the optimal set of assignments may be to variations

in the cij's. We can state the following points:

1. If all m ¢ n of the cij's are multiplied by the same constant,
the optimal set of assignments wiillnot be changed. For example, if
all cij's in Table 3 are multiplied by 0.5, ¢15 = 7.5 will be the high-
est weight in the resulting table; Cip = 5 will be the next highest
weight for an activity involving Faculty Member 1; and so on. Activ-
ities X15 (at four units) and X1 (at five units) will be logical first
steps toward a feasible solution, just as before. The new value of the
objective function for the optimal solution will be 0.5W = 0.5(321) =
160.5.

2. TIf the same positive constant is added to all m * n of the
cij's the optimal set of assignments will not be changed.lg/ For ex-

ample, if we add two to every cij in Table 3, c,. = 17 will be the

15
highest weight in the new table; ¢y = 12 will be the next highest weight
for an activity involving Faculty Member l; and so on. The value of

the new objective function for the optimal solution will be

4 8 4 8

4 3
] = % I +2 )= T +2% I )
v(+2) i=1 j=1 (cij )(xiJ) i=1 j=1 “13%13 i=1 j=1 *1j

= W+ 2(36)

321 +72 = 393 .

10/ 1Instead of addiag a constant to each cy; we could subtract a con-
stant provided that no C4j is reduced below zero.

- 36 -
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3. If allm * n of the ¢

ij's are multiplied by the same constant

B and are also all increased by the same constant o, the optimal set

of assignments will not be changed. The new objective function will

be
m E 5
= T . o .
W(B’a) i=1 j=1 ( °ij ) %13
8% F m 2 5
= . .+ o L. = + 6.
i=1 j=1 ?i]xij i=l j=1 le W+ o (36)

In the present example, if B = 0.5 and @ = 2, the value of W(B,®) asso-

ciated with the optimal set of assignments will be

w(ﬂﬁr) = 0.5W + 2(36) = 0.5(321) + 72

160.5 + 72 = 232.5 .

i

In the resulting cij table, 15 = 9.5 will be the highest weight;
€11 = 7 will be the next highest weight for an activity involving Fac-
ulty Member 1; and so on.

Thus, any linear transformation applied to all m : n of the cij's

will leave the optimal set of assignments unchanged, provided that no

c.. is reduced below zero by the transformation.

ij
The reason for this rather encouraging stability of the optimal

assigument set in the face of linear transformations or "codings" of

the Cii's may be clarified by an illustration.

-
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Units

Course 1 Course 2 Available
a,)
Faculty Member 1 10 7 3
Faculty Member 2 8 6 3
Units Required (bj) 4 2 6

The optimal solution is x,, =3 0

11 » X190 F
+ 0(7) + 1(8) + 2(6) = 50.

> Xpp = 1 and X9 = 2; W = 3(1C)
wWhat happens if we now transfer one unit of Faculty Member l1's

time from Course 1 to Course 2? Clearly, we must transfer one unit of

Faculty Member 2's time in the opposite direction, from Course 2 to

Course 1. The "gain" in rearranging Faculty Member 1's time is (-10+47);

the gain in rearranging Faculty Member 2's time is (-6+8). Thus, we

1lose 3 points on Faculty Member 1 and gain 2 points on Faculty Member

2; the net loss on the rearrangements is
(-011%12) + ("022"‘021) = ('10+7) + (—6-'8) = (-3) + (2) .

The optimal solution is stable because any attempt to change it

results in a loss-to-gain ratio of - % . If we add a constant, say 2,

to each cij’ we have (-1249) + (-8+10) = (-3) + (2); the numerator and
denominator of the loss-to-gain ratio are unchanged, so the ratio it-

self is unchanged. 1If we multiply each c,. by a conztant, say 0.5, we

ij
have (-5+3.5) + (~3+4) = (-1.5) + (1); the loss-to-gain ratio is still

:%fé = i? , as before.
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Thus, the stability of the optimal set of assignments depends on

the stability of relative differences or loss-to-gain ratios associated

with unit rearrangements; each rearrangement, as we have seen, invol-

's. Transformations of the type c*. =a + B ¢ i=

ij ij 1j’

1, 2, eeeyn, j=1, 2, ¢os, m, where @ and B are arbitrary constants,

ves four ¢

do not change the relative differences.

In the present example, the optimal assignment set would be
stable under slightly less restrictive conditions. For example, we
could multiply €11 and clzlby B and oy and € by any constant strict-
ly iess than 1.58 (we assume B > 0) without changing the optimal solu-
tion, But it is hard to generalize when we go beyond uniforw linear
codings. A technique known as "sensitivity analysis' can, however,
be used to determine the ranges'of values over which stipulated cij's
may be varied without changing the optimal set of assignments.

B. Some Logical and Practical Aspects of the Objective
Function Weights (cij's)

Despite the technical points we have just discussed, it seems de-~

ij's as approximations to magnitudes which,

in principle, could be given economic values and/or other values in

girable to specify the c

the larger society. The vocational value of a college education is
one of the most tangible of these magnitudes, and a good deal has been
written on this.subject by Schultz ( 18), Becker ( 2) and others.

When a university president allocates funds between the professional
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schools and the College of Liberal Arts, some implicit judgments may

i be inferred--for example, the last million dollars allocated to Liberal
Arts should be as productive (in terms of the president's value system
or objective function) as the last million dollars allocated to the
proressional schools in which career income is an important and fairly
ﬁ predictable output of the training received.

If we value Faculty Membe; 1's contribution in a sectien of Course
5 at 15 points and in a section of Course 1 at 10 points, we ought to
mean that we think‘héw§;complishés %% as much "good" in Course 5 #3 in
3 Course 1. 1I[ Faculty Member 2's contribution in & section of Course
5 is rated at 7 points, we ought to mean that we think he accomplishes
; f% as much "good" per section in that course as does Faculty Member

1. In a vocationally-oriented department, "good'" may be rou hly pro-
y g

portional to "increase in probable career income of students taking

the course."

We might alternatively think of the cij's as esvimates of the

national market values per course (i.e., the average salary cost per
course) of professors who can teach course j as well as faculty member
i. Would it cost about $15,000 to hire another professor who could
teach Course 5 as well as Faculty Member 1? Would it cost about $10,000
to hire someone who could teach Course 1 as well as Faculty Member 1?
Competition for féculty'members does express itself in terms of sal-
aries, teaching loads, class sizes and other considerations, most of

which have a direct bearing on salary ccst per course or per student
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quarter, so there would be some realism in trying to relate the c,.'s

]
ij
to salary costs of hiring comparable performance in the national mar-
ket. In general, it seams that the salary costs per section in dif-
ferent courses should be roughly proportional to the amounts of 'good"
done to the students, so the two approaches could lead to approximately
the same set of c,,.'s.

ij

For the moment, let us assume that the cij's in Table 3 are esti-

mates of the national average salary cost of obtaining the specified

lavels of performance in the stipulated courses. If c,. = 15, in

15
other words, we assume Faculty Member 1 would justify a $15,000 salary
if he were teaching nine sections of Course 5. (We leave aside the
question of need for variety in one's teaching program.)

Given the size of the particular department, however, there are
only four sections of Course 5 to be taught. The best use of Faculty
Member 1's talents within this department is four units of Course 5

end five units of Course 1, and the average value of these services

would be

4(15) *9‘5(1‘11 - 80 ; 20 _ 12,222, or $12,222 .

If we apply this interpretation of the cij's to all four faculty

members we may summarize the results as follows:

]
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1) (2) 3)
Value if
Value as assigned to
specialist the 9 sections Value in
in his best in which optimal
course (9 he has highest solution for
Faculty sections value to this department
Member of it) department as a whole _
1 $15,000 $12,222 $12,222
2 12,000 8,889 8,889
3 11,000 10,556 8,778
4 _8,000 6,889 5,778
Totals: $46,000 $38,556 $35,667

In arriving at these figures, we have multiplied each c,. by

umn (4) totals by Ié%a-we have

and

The second result (310) will

’”°

35,667 (_ '1"6?6'6) = 321

34,444(-1-;)%;)-) = 310 .

ij
we reverse this procedure and multiply each of the Column (3) and Col-

(*)

Value if
used as in
the first

feasible

solution

$12,222
8,889
9,889

3,444

$34, 444

1000
g 1f

be recognized as the value of the objec-

tive function associated with the [irst feasible sclution, while 321

is the value of the objective function associated with the optimal so-

lution.

A few more comments are in order:
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1. The optimal assignment set for each faculty member depends
on the array of talents of all other faculty members in the department.
Once Faculty Member 4 has been hired, the optimal use pattern for Fac-
ulty Member 3 is one valued at $8,778.

2. 1If Faculty Member 4 is on a one-year appointment while the

" other three members have tenure, in planning for the next following year

it might be desirable to assign Faculty Member 3 to courses in which

his total value is $9,889 (as in the first feasible solution) and try

to recruit a new Faculty Member 4 who would be strong in Courses 1 and

3. (1f Faculty Member 1 should leave, Faculty Member 3 could be assigned
to courses in which his value is $10,556.)

3. Faculty Member 2 is evidently stronger in research than in
teaching and might reasonably move to another institution which pro-
vides more time and facilities for research.

4. Faculty Membe: 1 has unusual qualifications for Course 5.

These might extend to one or two closely related courses in the same
field {perhaps at the first-year graduate level as well as at the ad-
vanced undergraduate level). A larger department with more enrollment
in Course 5 and closel; reiated courses could afford to offer Faculty
Member 1 about $15,000.

5. The faculty allocation model maximizes an objective function
pertaining to the department as a whole in a single year. Longer-run
goals for the department could also be expressed as values of the objec-

tive function. 1Is it realistic to plan for a department in which the
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average c, is 15 for the optimal assignment pattern? 1If so, the fac-

3
ulty would be worth (and would probably require) an average salary level
of about $15,000, not counting the upward trend over time in the na-
tional salary structure for persons of given ability.

Faculty Member 1 is evidently of the desired quality, if used as
a specialist. However, the peak performances of Faculty Members 2, 3
and 4 in their best courses are currently valued at $12,000, $11,000
and $8,000, Is this simply a matter of inexperience and other remed-
iable factors? If not, the long-run goal for the department (average
cij to equal 15) may be inéompatible with the retention of some or all
of these faculty members. Or, the goal might be redefined to state
that new faculty members should be of the desired quality or potential
.'s of 15); an average performance level of less than 15

ij

for new and existing faculty members combined would be accepted as a

(expected ¢

fact of life during a fairly long transition period.

- 44 -




I1L. Models for Making Optimal Decisions Over a
Sequence of Years

Decisions which educators make in a given year may affect next year's
alternatives. Decisions made about admissions of new students this year
may affect the number that can be admitted in subsequent years. Faculty

members recruited this year will typically remain on the staff for several

Re——

R

or many years, affecting program quality and other faculty recruitment

needs and opportunities throughout their tenure.

A. Recursive Programming Models

Recursive programming models can be used to examine the effect of
this year's decisions on future years's alternatives. They can also be
used to show the sorts of decisions which wmight be made if only this
year's information is used as the basis for making certain decisions.

The most commonly used recursive programming models have been

patterned after the model of Richard Day (9 ). These models include re-

cursive constraints on activity levels and on resource use which limit

s N

the increases (or decreases) in activity levels and resource use over

last year's levels to certain percentages of last year's level. The 4
ty P 5 y

objective function weights are often based on last year's market prices.
4 Recursive programming models of educational institutions jmight well 3

include "flexibility constraints' to limit the extent to which this year's

activity levels deviate from last year's activity levels since educators 4

probably would not want admissions, staff additions, and so forth to vary

9 widely from year to year. Ilowever, unlike the situations for which re- -

3 cursive progranming models have ordinarily been designed, the production
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processes relevant to educational institutions often requiré more than-
one time period to complete. Thus the amount of teaching resources avail-
able for instructing this year's freshmen depends upon the amounts re-
quired to teach sophomores, juniors and seniors (new students admitted
during the past three years). Thus a second sort of recursive con-
straint must be included in recursive models of educational institutions.

Including both flexibility constraints and the recursive constraiuts due
to multi-period production can lead to infeasible solutions. 1In such a
case it seems aﬁpropriate to require the recursive constraints arising
from multi-period production to be satisfied and to allow, if necessary,
the flexibility constraints to be violated.

In owxder to avoid this problem in the example which follows, the
flexibility constraints will be eliminated and replaced with quadratic
terms in the objective functions, W, which tend to favor (in a ceteris
paribus sense) last year's activity levels. For example, a change of
20 pefcent in the 1evei of activity i from the preceding year would

involve a 'penalty'" (a subtraction from W) four times as large as the

"penalty" for a 10 percent change; the penalty for a30 percent change
: would be nine times as large as that for a 10 percent change.
] For the model to be used here the objective function weights will

3 be recursively determined. Since educational institutions are not

3 confronted with markets in which output prices vary widely from year
to year, the same output "prices'" will be used for all time periods. Be-

cause the productive processes in which educational institutions are in-

L R L T e L

volved require more than one period to complete there is a problem of

{\J} allocating these "prices" among the several years required to produce

S S S

e
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§ the various outputs. More specifically the problem is one of deciding
what portion of the output '"price' to allocate to the first period of
the production process. For the spccific model to be used here the 'shadow
prices" from the previous year's solution will be instrumental in this
allocation.

Both the 'Day" type of recursive model and the type to be used here
are presented in Appendix 2.

The specific problem to be considered is similar to that which
might be faced by a department which is capable of awarding both
Bachelor's and Master's degrees. 1In order td make the problem manageable
certain simplifying assumptions will be made. Although in actual practice
graduate students take some and undergraduate students take most of
their courses in other departments, the model will assume that all courses
are taken within the major department. It will also be assumed that the
department can set admission levels for both graduate and undergraduate
students.

Certain other assumptions will also be made. Undergraduate class
sizes will be set at 35 students; graduate class sizeé will be set at 18

students. Undergraduate students dre assumed to take (on the average)

Y3
L

17.5 courses per year for four years; M. S. st

9 courses during the first year of their studies and 3 courses plus 9

credit hours of research during their second year of study. It is assumed i

that supervising 18 credit hours of thesis credit requires as much teach-

ing resources as is required to teach one graduate course. It is assumed 4

that the department has six faculty members, that each of these faculty )

don i 3o ol S b .
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members has signed a contract calling for supplying teaching inputs
equivalent to that required to teach 8 sections and that the per-
mitted division between undergraduate and graduate teaching ranges

4 between 7 undergraduate sections and 1 graduate section per year per
faculty member to 4 undergraduate sections and 4 graduate sections per
faculty member per year. It is also assumed that the teaching budget
; for each year includes 2 positions for graduate teaching assistants
who each supply 5 units of teaching inputs per year. It is assumed

é: _ | that for the courses taken by freshmen and sophomores up to 40 percent
'ﬁ of the teaching inputs can be supplied by teaching assistants without
loss of instructional quality. The department is assumed to be limited

to 30 new freshmen per year and 7 new graduate students. That is, these

3
E:
3
%
o
[
B
3
=3
g
3

are assumed to be the maximum numbers of new students willing to enroll

each year. The department is assumed to assign relative prices of 3 to.

2 to B.S. and M.S. degrees.

The actual activities and constraints used are presented in Appendix 2.

4 It was assumed that at the beginning of the first year considered by

the model the department had 21 seniors, 22 junirs, 23 sophomores and 6

graduate students.

The approximate admissions solution generated by the model are pre-
sented in Table 10. These solutions are characterized by a period of ad-
justment from period 1 through period 10 followed by 4-year cycles from
period 10 onward. The admissions solutions are shown in ﬁore detail in 4
Table 11, along with the calculations of tﬁe valﬁe of the objective |

function in each year.
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Table 10. Optimal Admissions of Undergraduate and Graduate Students Re-
spectively as Computed from a Recursive Programming Model

Year New Undergraduates New Graduate Students
1 30 7
2 28 3
3 23 5
4 20 5
5 21 7
6 22 7
7 23 7
8 24 7
9 25 7

10 26 7
11 24 7
12 24 6
13 25 7
14 26 7
15 24 7
16 24 6
17 25 7
18 26 7 B
19 24 7
20 24 6
21 25 7
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It is apparent that the recursive solutions are very efficient from

period 10 or so onward. Some idea of the relative inefficiency of this
particular recursive model can be obtained by comparing its solutions
during the first 10 periods to the solution of a dynamic programming

model covering the wame interval of time.

B. Dynamic Programming Models

In order to make the comparison meaningful the dynamic programming
model was required to satisfy the same initial conditions as the re-
cursive model and in addition it was required to leave sophomore, junior,'
senior and second-year graduate student enrollments in period 11 at the
saﬁe levels as those generated by the recursive model.

The'solution to the dynamic programming model is presented in
Table 12. Since the dynamic programming.model maximizes a single ob-
jective function for the whole l0O-year period rather than sequentially
maximizing an objective function for each year it was to be expected that
its performance would be somewhat better than the recursive programming
modeli. The dynamic programming model allows total admissions of at
least 250 undergraduate students and 61 graduate students. This is 8 more
undergraduate students and 1 fewer graduate student than allowed by the
recursive programming model during the same ten-year period.

There is little doubt that if resource avéilabilities can be pre-
dicted accurately for several years into the future a dynamic programming
model will be better for planning purposes than a recursive programming

model. On the other hand, if resource levels can be predicted accurately
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; Table 12. Optimal Admissions of Undergraduate and Graduate Students

(L as Computed from a Dynamic Programming Model 1

Year New Unde;graduates New Graduate S tudents

1 30 7
2 24 7
3 23 5

4 23 6

5 24 3
6 25 7
7 26 ‘ 7
8 24 6 :
9 25 6
10 26 7 )
- 52 - 3
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only for the current yeér (or perhaps only two.or three years | at a

<

time) the relative advantage of dynamic programming models is greatly

diminished.

The specific recursive programming model considered here proved
; to be somewhat more efficiént than had beén éxpeéted. It seems likely
that decision models based on similar recursive programming models wiil
be far less efficient than would be iﬁdicated by the results presented
in Table 16. The need to make decisions recursively (i.e., once each
-4 | year or 6nce each planning period) can hardlyvbe avbided since the

accuracy or certainty of the information available about resocurce

availabilities and so forth for any particular time period is likely

to increase as that time period draws nearer. However, it would seem
reasonable to expect that better decisions could be made this year if
whatever information is available about future years is used even if this -

information is not known with certainty. Such an approach would probably

1 require the determination. (tentatively) of admissions (and other activity)

o P hre s

levels for future periods as well as for the current period. The future
admission levels would of course need to be revised the following year

if new information became available. It is likely that such an approach

3 could also take advantage of some of the techniques of stochastic pro-

] granming.

C. A Comon Scnse Interpretation of the Dynamic Programming Model

A1l the values of variables involved in the ten-year dynamic pro-

gramming model are shown in Table 13. The model itself in matrix equation

form is presented in Table 16, Appendix 2.

1 .
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The complete model involves 50 activities (5 activities in each

of ten years) and 30 restrictions (3 restrictions in each of ten years).

The activity levels in, say, Year 3 depend prrtly on the numbers of

freshmen admitted in Years 0, 1 and 2 and the number of beginning

directly relevant to Year 3 are as follows:

Relevant Activities:

- graduate students admitted in Year 2. The activities and restrictions

Years O, 1 and 2: _ Year 3
]BSO BS1 BS2 MS2 BS3 Ms3 13 T3 TR3
* % * %*
i 3.00 2.00
J3 1.0 1.0 ~-1.0 -1.0 <0
u3 |1.0 1.0 0.6 1.0 1.0 < 84
G3 4.0 3.0 - -3.0 < 36
X, [23 30 24 7 23 5 48 0 2
W, =23 (3.00) +5 (2.00) = 69.00 + 10.00 = 79.00

3

* Not used in calculating W

The objective of the department is to convert 48 sections' worth of

3.

faculty time each year (over the ten-year period) into as many "output

points" as possible, given that each B.S. degree is valued at 3 points and

each M.S. degree at 2 points.

B.S. degree, the 2 points represent 'an increment of value added over and

above the B.S. degree).

There is only one activity available for producing M.S. degrees but

(As the M.S. candidates already have the

there are two alternative activities for producing B.S. degrees.

The

cost of a unit level of each activity in sections of faculty time is:

- 55 =
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U.S.: 1.17 sections of faculty time

ﬁ.S.(I): -2.00 sections of fa;ulfy time

B;S.(II): 1.60 gectinns of faculty time.
{The B.S.(II) activity also requires 0.40 sections of teaching assistant
time, but we will disregard the cost of tﬁis input for our present.
‘purpose). |

The value of output per section of faculty time in each activity is:

M.S.: 2.00 points

1.17 sections 1.70 points per section

_3.00 points
2.00 sections

B.S.(I): = 1.50 points per section

3.00 points =
1.60 sections

B.S.(II): 1.88 points per section.

: Within the terms of the problem, Activity B.S.(II) produces the greatest

3 value per section; Activity M.S. is second and Activity B.S.(I) is third.

Of the three restrictions in each year, J insures that freshmen and
b ' - sophomores get the required amount of instruction, U that juniors and

seniors get the required amount of instruction, and G that graduate students

get the required amount of instruction and thesis supervision. The unit

of measure in restrictions J and U is one-half sections of faculty time;

i . the unit for G is one-sixth section of faculty time.

FREEL A b A el 3 3t b g,

In Table 13, the shadow prices corresponding to éach restriction in
a given year indicate the number of points by which the value of the ob-
joctive function could beincreascd if one more unit of the restricting
resource were available (one more half-section in J and U, one more i

%1:) sixth-section in G). The difference in units is inconvenient, so we | o
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.'ﬁultiply the shadow prices of J aﬁd U by 2 and tﬁat of G by 6 to obtain. ‘~   §
the increase in value of the objective functioﬁ.per additional sectioq  ~,‘  E
of faculty time in all three cases with the following results: - ,g
Sﬁadow Prices Per Sectign of *T‘,Levels-of Sciected Activities | '" 5
1 0o 0 0 . s0 3 4 ,;:2
2 o .1.70 1.70 1.70 ; ' " -50. - 5 4 | _}é
3 . 0.80 .33 1.33 .48 0 2 O
] 4 1.20 2.00 2,00 | 47 0 . oy S ’i
g 5 1.50 | 1.50 1.50 o 12 ,‘  36» | 1 *°«~ ;
.? 6 1.70 250 1.8  s0 o 0 | ,”75
f 7 0.80  0.80 0,80 o502 “ R
i 8 1.82 2.00  2.00 0 0 4 e i
i 9 0.90 1.50 1.50 49 0 3 n.'”w
% 10 1.88 ~ 1.88  1.88 | 50 1 3 | %
5 The. basic economic problem is to allocate 48 sections 6f faculty
§ time among freshman-sophomore, junior-senior and graduate level teaching
i } ,
g so as to maximize the value of total output. The shadow prices are
§ marginal value products; in the continuous cases usually stressed in
; cconomic theory, the value of an édditional section of faculty time
% should be the same in all three uses.
% In Years 1, 2, 5, 7 and 10 this.thfee-way equality applies.
§ In Years 3, 4, 8 and 9 the shadow prices of U and G are equal but the
ﬂi) shadow price of J (marginal value product of faculty time in freshman
%
- _ i s e e




g;ﬁ , and sophomore teaching) is lower. 1In Years 3, 4, and 9, the shadow price
; of J is 0.6 times‘as iarge as the shadow price of U,
4 | Activity’x5 has the effect of equating the shadow prices of

U and G whenever Xy > 0, and x5

cept Year 6. Activity X, has the effect of equating the shadow prices

is greater than zero in all years ex-

1 of J and U when X, >0, as it is in Years 1, 2, 5, 7 and 10. When

Activity X, = 0, in most (but not all) cases the wmarginal value product:
of faéﬁlty time iﬁ teaching freshmen and sophomores is only 60 percent
as large as that in teaéhing juniors and szeniors under the assuﬁptions
£ of our problem.
In Year 2, it appears that the most 'profitable' activity to
expand is the productioh of M.S. degrees; in Year 5 the production of :

B.S. degreés using Activity B.S.(I) without teaching assistant help;

M pa S it A Rt Tt s

2oa b

and in Year 10 the production of B.S. degrees using Activity B.S.(II)

with teaching assistant help.

il

Evidently the solutions of dynamic prog ;amming models can be

given common sense interprefations. The techniqué of solution is
essentially that used for ordinary linear programming models. The total
numbers of activities and restrictions increase with the number of years in .
the planning period and also with the real complexity of the department
and/or the degree of detail with which it is represented. The Plessner- é
f Fox-Sanyal model ( 17) has 15 activities and 16 restrictions in each year
4 of a four-year planning period, or 60 activities}and 64 restrictions for
the period as a whole. 3

The McCamley model (5) of a large Economics department has 82

activities and 57 constraints for a single year; a ten-year dynamic pro-




°

gramming version at this level of détail would have 820 activities

and 570 restrictions. A model'of'this size would not exceed the

capacity of modern computers; however, it remains to be seen whether

this level of detail is needed (or 15 in Some_sense useful)in a ten- -

year planning model.
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IV. A Two-Level Deéisioﬁ_Model for Allocating the Resources of a
College Among Its Constituent Departments |
The third problém to be discussed is that of allocating fixed
resource supplies among several departments (or among other types of
suborganizations or sectors). The dean of a college may be granted
a certain budget for the operation of his college. He is also likely
to have resources such as office space and classroom space whirch
are available to him in limited quantities. He may want to allocate
these resourcés so as to achieve a maximim Qalue of soﬁe objective
functipn,
Iﬁ addition to the resources which obviously need to be allocated
there will usually be other products whose use and production ﬁuSt

be coordinated. In the previous model it was assumed that students

take all of their courses in one department. This, of-course, is

not the case. There is, therefore, a need to insure that the émounts
of'instfuction required by students outside their own departments do
not exceed the amounts supplied by the various departments which supply
service teaching. In a planning model it may therefore be appropriate
‘to consider the dean as being concerned with the allocation of that

instruction and of those other ocutputs which are produced by one de-

partment for use by other departments within the same college.

One way for the college dean to decide on the appropriate él-
loéations of the various resources would be for him to treat his college.
as one large decision-making unit. HKe could decide how much of each

output to produce and what input combination to use in producing it.
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A byproduct of these decisions would be decisions about the amount of

©

each resource to allocate to each department.

Fortunately, in some cases the dean may be able to allocate re-

- sources among departments, let the departments make most of the output

and other activity level decisions, and still accomplish whatever output:

- objectives he may have in mind. One of these cases occurs when all of

the constraints are linear, the college objective function is linear,

‘and when in addition, the departméntal objective functibns'assign

the same weights to the various outputs and inputs as are assigned

by the cellege objective function. The results of Kornai and Liptak (13)
assure uéﬂthagiin such a case there exists a system 6f quotas (for the
resources allocated by the college dean) that, {f implementad, will insure
that the college dean's objective function will be maximized. The de-
composition algorithm of Dantzig and Wolfe ( 8) provides a basis for

the construction of a decentraiized decision-making approach which

can be used to discover an optimum set of quotés. Under this approach

the college dean would, at each phase, ask each departﬁent how much of

each resource it could "profitably'" use if certain '"prices" were assigned

"to each resource. The information which the departments give him would

be used to aid in the derivation of a ﬁew set of 'prices." The college
dean would then ask each department to tell him how much of each re-
source it would use at these new prices. This process would continue
until an opti;um set of quotas is obtained.

A more precise description of this approach and its termination

conditions can be found in the appendix. The primary advantage of this
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?Sf approach (and of others like it) is'ﬁhat it shifts much of tﬁe decisién-. ;
; . making responsibility frqm the college dean to the individual de- z
§ partments. §
% Consider a college having three departments (depaftments A, B, and é
Ji C). Suppose that the college has a teaching budget of 220 thousand. i
; doilars per year, that 80 (graduate) students from other colleges take %
i v courses in department A, 115 take courses in department B, and 210 3
% take courses in department C. Suppose further that graduate students ?
%%v in departments B and C take courses in department A and that graduate E
f students in departmeht A take courses in department B. To simplify ?'
2; matters it will be assumed that undergraduate enrollment, curriculum, %
? and distribution of undergraduate students among majors is predetermined. ;
; Some of the assumptioné which will be made concerning the in- i
2 ‘dividual departments are outlined in Table 14. Thelspecific modeis used %
g fof'the departments are presented in Appendix 3. These models all ?
? allow alternafive input combinations in the production of research é\
% ’ publications, and in the teaching of undergraduate students. They ;
é classify graduate students according to means of support. They also i
; permit varrying amounts of research, graduate teaching, and undergraduate %
% teaching per faculty member. i
% The specific formulations used are presented in Appendix 3. ;
i The model required 7 phases to reach an optimum set of quotas. %
f The "prices" and corresponding resource use levels for each phase are 2
é" presented in Appendix 3, Table _21 . An optimum set of quotas is also pre- ;
%% sented in Appendix 3, Table _21 . The departmental solutions are pre- ;
%ﬁff sented in Appendix 3, Table _22 . | é
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Table 14. Two-Level Decision Model: Some Characteristics of Departments A,B & C

Department Department Department
Item A B c
No. of faculty members a/ 5.5 8.5 7.5
Undergraduate teaching re-
quired (no. of student courses) 1850 2750 2250
Graduate service teaching
| required (no. of student
; courses) determined by college dean 210
 Research budget ($'s) 40,000 20,000 45,000
' Faculty salaries ($'s) 11,000 10,000 12,000
Undergraduate class sizes
Faculty instructors 35 30 40
Both faculty and
graduate student 4
instructors 30 , 25 35
Graduate class sizes 24 15 , 18
B 'Thesis ''class sizes" 6.5 - 7.0 7.5
Teaching Assistant Salaries($'s) 2800 2600 - 2750
Research Assistant Salaries($'s) 2750 - 2700

Number of inputs supplied by
teaching assistants (sections _ \
taught per year) -5 5 6

Number of years required to | .
obtain M.S. degree 2 2 i 2

Number of courses taken to
obtain M.S. degree

in: Department A 10 3 4
in: Department B 3 10 0
in: Department C 0 0 9
Thesis Credits 3 3 3
Objective function weights
research publications 2.50 2.00 3.00
M.S. degrees 1.50 i.75 2.00

a/ Each department is assumed to have an integral number of faculty members
one of whom devotes half of his time to administrative functions.
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The college model as a whole looks fairly complicated. It is im-
portant, therefore, to consider the model for one of the departments in
considerable depth. This will assure that we understand the logical
structure of the model, the realism of its content (class sizes, teaching
loads, and the like), and the mechanisms through it allocates limited

resources among the various departmental activities.

A. A Common Sense Interpretation of the Model for Department A

In Table 15 we have rearranged the rows and columns of the Depart-
ment A model to emphasize the relative independence of its three major
pfograms, research, undergraduate teaching and graduate teaching, in-
cluding thesis supervision.

1. Sizing up the research program, When this is done, we see

that the research program includes only three possible activities QAl,
A2, A3) and uses only three kinds of resources, namely research assist-
ants (Row 4), faculty man years (Row 5), and research current expense
funds (Row 6, in part). Activities AS’ All’ A12 and A13 show that the
salaries of research assistants and the research portions of faculty
salaries, as well as research current expense funds, must alllbe

fitted into the $40,000 research budget indicated in Row 6 of the De-

partment restrictions column.

Regardlpss of anything else, then, our research program must stay

wi thin the%$40,000 limit. The dollar costs of a unit of each research

activity (that is, one man year of faculty time, plus research assist-

ants, if any, plus current expense funds) are as follows:
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Cost per Cost ‘per unii of Activity:

Row ' Unit of
No. Resource Resource Al ‘ A2 A3 ]
(doIlars) (dolTars) (dollars) (doTTars) i

4 Research assistants 2,750 8,250 2,750 0 3
5  Faculty time 11,000 11,000 11,000 11,000 §
6 Current expense 1 3,000 1,500 750 :
Total dollar cost (Row 6): | 22,250 15,250 11,750 3

The outputs of a unit of each activity are valued as indicated by the ob- ;
jective function weights, the cij's, at 5.00, 3.75 and 2.75 respectively for
Activities Al, A2 and A3. The 540,000 budget restriction would perﬁit a maxi-
mum of 1.798 units of Activity Al, or 2.623 units of Activity A2, or 3.404 units ;

" of ActivifyAB. The values of the total outputs associated with each df these -

choices are given in Column (3) below:

Activity (1) (2) (3) (4) (5) . E

Maximun No. Value of Value of Faculty Man- Dollar Cost Per 4
of Units of Output per Maximum years required Unit of Value of :

; No. the - Unit of Output for maximum output:

( Activity - Activity Col.lxCol.2 Output $40,000 £ Col. 3

g ' ’ (dollars)

? . o

g Al ' 1.798 5.00 8.990 1.798 4,449,

% | A2 2.623 3.75 9.836 2.623 4,067,

A3 3.404 2.75 9.361 3.404 4,273

1f we regard dollars as our most limiting factor, then Activity A2 is

moderately superior to Activity A3 and Activity A3 is moderately superior to
not
Activity Al. However, the differnces ardlarge; as indicated in Column (5) the
are <o
dollar:costs per unit of output-value/$4,067, $4,273 and $4,449. Presumably,
combination
a unit of output-value represents some/of quantity, quality and importance of the :
' - an
research results obtainad and reported. For example,/article of average im- o
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portance in the refereed national journals most relevant to Department A
might be rated at {say) 2.00 output-value units and the values of other
kinds of research reports and articles could be related to this as a base.
If the chairman of Department A has some doubts about the precision of
his cij's, he will be somewhat diffident about his ability td choose
between Activities Al, A2 and A3 on the basis of Colum (3) or its
equivalent, Colum ('5). However, if dollars are the only scarce re-
source, the computer will (quite correctly on‘the basis of.the numbers

we féed into it) tell us to put our entire $40,000 into 2.623 units of

Activity A2.

For future reference we must take note of the fact that Activity Al is
far superior to Activity A2 in terms of output per faculty man year
(5.00 versus 3.75 value units) and Activity A2 to Activity A3 (3.75
versus 2.75 value units). Hence, if faculty time turns out to be the

most limiting factor, we will be wise to emphasize Activity Al.

7

I

2. Undergraduate teaching. Activities A7 and A8 are the only ones

involved directly in undergraduate teaching. Row 7 tells us that De-

partment A must provide at least 1850 student courses of undergraduate
instruction. Although no cij's (objective function weights) are assigned

to Activities A7 and A8, the restriction in Eow 7 really gives under-

graduate teaching an absolute priority over research and graduate teaching.

Row 7 is a categorical imperative: "Thou shalt teach at least 1,850 student
courses to undergraduates, regardless of other considerations.'" Alternatively,
we could assign relatively high cij's to Activi;ies A7 and A8, to insure

that the computer rated them as having higher values per faculty man year and
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per dollar than any other activities. We would still need to specify

g an upper limit, presumably 1,850, on the number of student'courses to be
E? , o | taught, or the computer might tell us to :each moré student courses than
; E any realistic estimate of the enrollment which will be forthcoming.
i ) ﬁow 7 says, then, that undergraduate teaching comes first. Activities
§~ A7 and A8 have ﬁhg following meaning:
g | | Outputs (-) | Activity Number
? and
3 Row No. | Inputs (+4) _ A7 A8
; 7 | Class size -35 =30
f Prbportion of teaching |
E . done by:
_é | 9 Faculty 1 0.5
; 11 Teaching assistants 0 0.5 ;
2 The basic unit here is the individual class. The salary cost of one ;
; ~class of 35 taught wholly by a faculty member (Activity A7) is §7agOO = $925; ?
,§ The salary cost of an instructional pattern which uses 0.5 "sections' worth" E
; of faculty time and 0.5 "secﬁions' worth" of teaching assistant time per |
; 30 students (Activity A8) isﬁ : ;
% Faculty: 0.5 fz‘%gg = _ZT%QQ = $462.50 Plus: g
‘ Asedstact: 0.5 2500 . 2800 . 240,00 ]
Total: $742.50 !
gk Activity A7 costs _§§%§_ = $26.43 per student course, while Activity ;
lg A8 césts -§Z&%6§9- ; $24,75 per student course. So far as the model ]
§ is concerned, the two activities are equally acceptable in terms of quality ]
% {:} per student-course. ;
S - S S S A TR - S
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The total resource costs of teaching 1,850 undergraduate student-

courses by each method are:
Activity Number

A7 , A8

~Total output

(in studeat-courses) 1850 1850
Number of units of activity

required 52.86 61.67
Sections' worth reguired from:

Faculty 52.86 30.83

Teaching assistants 0 30.83
Total dollar cost: $48,896. $45,788.

The dollar costs are moderately lower for Activity A8. Accivity AS

is much more economical in the use of faculty cime, if that proves to be

a major consideration. Also, Activity A8 provides support for some gradu-

ate students.

3.. The graduate (M.A. or M.S.) program: Activities A4, A5 and A6

. have tt ‘ol lowi in etations: A
have the following interpretations Activity Number

Row No. Description A4 A5 A6

* Output: M.S.degrees in Dept. A. 1 1 1

1 Courses per student taken
in Department A: 10 10 10

2 Courses per student taken
in Department B: 3 3 3
8 "Equivalent courses' repre-
sented by thesis credit
taken in Department A: ' 3 3 3
Means of support: :
i 13 Not supported by university funds: 1
4 Rescarch assistants -2
6 Rescarch budget $5500
11 Teaching assistants -10
3 Teachiny budget $5600

* The outputs (one M.S. degree) are not stated explicitly in a single row
but arce implicit in Rows 13, 4, 6, 11 and 3. -
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#? The M.S. program is assumed to take two years regardless of the %
‘} student's means of support. In the Actiyity A5 columm, the -2 and the %
% $5500 imply that he serves as a research assistant for two years on a part- %
% time salary of $2,750 a year. Under Activity A6, the -iO and thé $5600 %
? imply that he teaches 5 classes a year for two years on a part-time }
% salary of $2,800 a.year. ;
gé Activities A9 and A10 have the following meanings: é
2 Row No. Description . Activity Number %
] A9 ’ Al0 g
; 1 Class size : | -24 ;
ﬁ : : 1
% 8 - Thesis supervision, equivalent é
] class size . ~ =6.5 z
z 10 Sections' worth of faculty time 1 | 1 %
g Salary‘cost pér equivalent A i
z section: $ 925. $ 925 ?
% Pef_equivalent student course: $ 38.54 $142.31 g
.; It is assumed that each M.S. degree requires both the 10 courses in ?
g Row 1 and the thesis credit (equivalent to 3 courses) in Row 8; each of ;
4 these activities draws directly on only one resource, namely faculty time i
g .(Row 10). It would therefore be logically possible to combine actiﬁities ?
? A9 and A10 to say that 10 actual courses plus 5 courses' worth of thesis ;
é credit require -%g— + ET%—- = 0,4167 + 0.4615‘= 0.8782 sections' worth ;
%l of faculty time. At the same time Rows 1 and 8 could be combined to say f
é that an M.S. degree requires 13 equivalent courses at an average equivalent é
g class size of 14.8 students. i
5 70 - .
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4, The "faculty allocation activities." Activities All, Al12 and Al3

represent three different kinds of time allocations for .faculty member,
along with the corresponding charges against teaching and research budgets

(Rows 3 and 6) and against the initial "pool" of faculty man years--in

3 this case 5.5 (Row 12).
The items with negative signs in Rows 5, 9 and 10 of Activity All
have the following meanings; per unit of Activity-Ail:

Row.5: One-third of a man year of faculty time is made available

3 for research activities.
4 Row 9: Six sections of faculty time are made available for
4 undergraduate teaching.

Row 10: Two sections of faculty time are made available for
graduate teaching, including thesis supervision.

Eight sections a year are regarded as a two-thirds time load, leaving

one~-third time available for research.

i B A unit of Activity A 12 provides one-third of a faculty man year for

research, four sections of time for undergraduate teaching, and four

F; sections for graduate teaching. A uait of Activity Al13 supplies one

‘é faculty man year exclusively for research.

;i

% .5. Putting things together. Activities 11 and 12 imply that no

i% faculty member shall be required to teach more than 8 courses a year. ;
i3 ‘ : '
f; With only 5.5 faculty man years available, a maximum of 44 sections can be %
§ taught by faculty members. ‘If Activity All were used exclusively, the .

LT T

maximum number of undergraduate sections to be taught by faculty members -3

‘would be 5.5 times 6, or 33.
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Recall that the undergraduate teaching activities A7 and A8 would

require 52.86 and 30.83 sections of faculty time respectively. The model
clearly requires us to use Activity A8 exclusively, or nearly so, with
half of the total teaching time supplied by teaching assistants.

We must use at least 30.83 sections of faculty time in undergraduate

teaching. If Activity Al2 were used exclusively, we would have only 22
units available at the undergraduate level, so we will evidently have to rely
largely on Activity All, whiéh can supply as many as 233.

Tentatively, then, we can decide to use Activity 8 exclusively for
the 1850 student-courses of undergraduate teachiﬁg. This requires 30.83
sections of faculty time.

1f we supply these 30.83 sections'exclusively with Activity All, we

require __223§§__= 5.4 units of this activity.
Activity All at the level of 5.4 units provides 5514 = 1.71 man years

of faculty researéh time. As it seems clear that féculty time is a

scarce resource, we may decide tentativély to use Activity Al exclusively in
our research program--1.71‘dnits of it. At $22,250 per unit this would

use up $38,048 of the $40,000 available for research.

‘ At‘phis point, we have Q.36 man years of faculty time unassigned and
have done nothing at all about graduate teaching, though our tentative
research program calls for 3(1.71) = 5.13 (or 5.14) research assistants.

We must recall that 5.14 units of Activity All provides 2(5.14) or
10.28 sections of faculty time for graduate teaching. Each M.S. degree

requires 0.4167 sections of faculty time in course work and 0.4615 in

thesis supervision, or 0.8782 in all. With 10.28 sections we can accommodate

~




10.28

= 1 ; ‘
0.8782 11.71 M.S. degrees per year. |
FHow does this estimate square with the following facts?
a. In choosing Activity A8 for undergraduate teaching, we expressed a f
need for 30.83 sections of help frowm teaching assistants at 5 sectiomns pc:

part-time assistant per year, or _§9§§§_,= 6.16 teaching assistants.

T L ST T P

b. In choosing Activity 1 for research, we expressed a need for 5.14 re-

search assistants.
Thus, we require 6.16 plus 5.14 or 11.30 assistants for these two

activities. As each one spends two years on the M.S. pro; rar, this group

11.25
———r.-—

would lead to A

= 5.65 M.S. degrees a year.

c. Activity A4 provides M.S. training for'students not supported on
university funds, but Row 13 restricts their numwber to not more ihan two
M.S. degrees a year.

Hence, Activities A4, A5 and A6 combined could amount to not more than
7.65 M.S. degrees under our first round of decisions on activity levels. So,
we appear to need only 7.65 (0.8782) or 6.72 scctions of faculty time for
graduate teaching of M.S. candidates in Department A instead of the 10.28

sections mede available by 5.14 units of Actiwvity All.llj

s T

At this stage we will have arrived at the following value of Department
A's objective function:

Research: 171 units of Activity Al times 5.00 points per unit = 8.55 points

11.48 points |
20.03 points ° ]

M.S. degrees: 7.65 degrees times 1.50 points per degree =

6. Taking a second look. We probably have not yet reeched the maximum %
possible value of the objective function, for the following reasonms: : 3
(1) We have $40,000 - $38,048 = $1,952 of research funds unused;

(2) We have 0.36 man years of faculty time unallocated, which could evi-

11/ The solution of the college model (see Table 15) indicates that 8.18 sections
arc needed for teaching graduate courses and 3.32 sections for thesis super-

(NN
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dently go into full-time research; and %
(3) With 5.14 units of Activity All, we have a little more | |

E capacity for graduate teaching than we need (for M.S. candidates in
é Department A only). ) g
'§ Evidently we could at least accomplish a little more research ;
? with our remaining resources. i
4 ;
% So far we have made no allowance for the three restrictions on %
5 £
% Department A's activities which are to be derived from the interaction E
i between the dean and all three department chairmen (of Departments %
: ' :
f A, B arnd C), _ | ;
? : Department A's teaching budget must evidently include the ;
: following: | - S
% Faculty: 5.14 times $7,400 =§$ 38,036 f
§ Teaching assistants:' 6.167 times $2,800 =3 17,267 %
§ Total: $ 55,303 é
é We cannot determine the amount of service teaching required from ?
; Depértment A by the other departments, of course, without going through | é
é an approximate analysis of-the models for those departments and ul- - J 5
i . .timately for the college as a whole. i 5
: It will be worthwhile to compare the final results for Department A \ 15
S ; as part of the complete system with our preliminary commdn sense results: %
él 11/ (continued) | 5
-i vision, a total of 11,50 sections. But note that the college model requires ;
3 Department A to teach 80 student courses, or 80 = 3.33 sections, to 1
] graduate students from other colleges and 24 also to supply 3
- service courses to some graduate students in Departments B and C. 3
L))
‘ - T - -
1 ]
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Activity Activity Level in Final Results of College Model:
No. Preliminary Activity Objective Contribution to
Analysis Levels Function Value of Ob-
Weights jective Function

Al 1.71 to 2.07 1.47 5.00 7.35

- A2 o 0.50 3.75 1.88
A3 0 0 2.75 0
A7 0 0 0 0
A8 61.67 61.67 0 0

A 2.00 1.66 1.50 2.49
A5 2.57 2.45 1.50 3.67.
A6 3.08 3.08 1.50 4.62
A9 Not comparable 8.18 0

Al0 3.53 3.32 0

All 5.14 4.83 0

Al2 | 0 0.46 0

Al3 0 to 0.36 0.21 0
Total value of objective function: 20.01

Apparently, the college-level restrictions we ignored in our pre-

liminary treatment of Department A approximately offset the gains

we should have made by using up our remaining $1,948 of research budget

and 0.36 man years of faculty time in the absence of college-level re-

strictions and interactions.

7. Meaning of the "shadow prices" in the final solution.

In

general, the shadow-price associated with any limited resouce is the

amount by which the value of the objective function could be increased,

directly and/or indirectly, if we had one more unit of that resource.

The shadow prices associated with the restrictions in the re-

spective

as follows:

rows of Table 15 for Department A (in the final results) are




.-f;,. i

2
N~
4 Restriction Contained Shadow Unit in Which Re- ”
3 : in Row Number Price A striction is Stated '%
1 4 0.491 Number of research assistants {
4 ;
3 5 2.991 Man years of faculty time ]
3 6 0.178 $1,000 of research funds 2
7 0.037
i 9 1.423 ‘One section of faculty teaching time ]
11 0.810 -
‘ « 1% 0.059 ;
. 2% 0.08%4
1 | :
: 13 0 Restriction not effective 1
7 f
4 o 10 1.423 One section of faculty teaching time
L 3% 1.446 $1,000 of teaching funds %
L 12 1.037 One man year of faculty time 3
4 ok A 4
3 'Resources allocated to Department A as a result of optional quota solution 1
g We will not try to unravel the meaning of all the shadow |
f prices, but will interpret a few. ‘ - ‘ %
3 a. Rows, 4, 5 and 6 as restrictions affect the value of the ob- f
§ ' jective function through whichever research activity would be expanded %
z if these restrictions were relaxed by one unit. 1
k In this particular case, all three restrictions are limiting upon 4
4
3 ‘the expansion of Activity A2. A unit of Activity A2 requires one rescarch §
{ assistant, onc man year of faculty time, and $1,500 of current expense g
‘é funds and its objective function weight is 3.75 points. As Activity A2 %
% is a linear homogeneous production function, a doubling of the amount g
@ of every input will cause a doubling of the output. i
Y, f
- - 76 - -
i ]
f,




We must note that the Row 6 restriction is in $1,000 units,
whereas $1,50C is required for each unit of Activity A2. Hence, the

Row 6 shadow price of 0.178 per $1,000 is better interpreted as ¢.267

per $1,500. We have, then, the following:

Points:
Row 4: iShadow price per research assistant: 0.491
"Row 5: Shadow price per faculty man year: 2,991
Row 6: Shadow price per $1,500 current expense
: funds: 0.267
‘ Sum of the three shadow prices: 3.749

" Apart from rounding errors, this exhibit makes it perfectly
clear that the three restrictions are preventing an expansion in

‘Activity'AZ,.which would increase the objective function by 3.75 points

per unit of that activity.

The other shadow prices are not this transparent. ~Certain re-

lationships, however, suggest the nature of the mechanisms at work:

b. The shadow prices for Row 9 and Row 10 are identical. Their

identity implies that the marginal value products of the last unit of

faculty time in the undergraduate and graduate teaching programs are

equal. The size of the shadow prices, 1.423 points per section of

faculty teaching time, suggests that a good part of the effect may

come through an increase in M.S. degrees produéed by Activity A4, as

0.8762 sections of faculty time in graduate teaching and thesis

supervision combined are sufficient to permit an additional M.S. degree,

valued at 1.50 points. Onc section would permit an increase in the

objective function of 1,708 points through Activity/&. Of fsets probably |
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come through the fact that each M.S. degree awarded by Department A

requires three service courses from Department B at an 'opportunity

cost'" of 0.084 points per course (the shadow. price corresponding to

Row 2). The nét result of these two effects would be 1.708 - 3(0.084) =
1.708 - 0.252 = 1.456. Other, more obscure, effects would ac:ount for
the difference between 1.456 and 1.423. .

c. It may be noted that the shadow prices associated with
Rows 1 and 8; namely 0.059 and 0.219, are in inverse ratio to the

graduate class size of 24 aad the thesis "class" size of 6.5. Thus,

0.059 _ 6.5 _ 1.416 _ 1
0.219 24 1.424 1

an additional graduate student-course would require ;4

except for rounding errors. In Row 1,

0.04167 sections' worth of faculty time, If used to increase M.S.
degree output in Activity A4, the objective function would be increased
by 0.0712 points (1.708 times 0.04167). The service course demand on
Department B would draw this down by 0.252 times 0.04167 or 0.0105
points, for a net effect of‘about 0.0607 poiuts. very close to the
0.059 of the optimal solution.

We may note also that, in Table__22 of Appendix 3, the shadow
prices associated with the teaching budget restrictioﬁ are the same
(1.446) in all three departments. Those associated with graduate in-
struction in the subject matter of Departmeﬁt A are the same (0.059) in
all threc departments; and those associated with graduate teaching
in the subject matter of Department B.are the same (0.084) in two depart-
ments, A and B. (Graduate students in Department C do not take courses

in Department B.)

- 78 -

B
%
4
3
P
i
3

R b R g g G S i T Ly L) B b e B e i M s i R
| o G o ¢ '




g

N ‘ﬁz’fmﬁﬁ"fﬁﬁﬂﬂ*a

Tne identical shadow prices for a given college-~level resource
in the two or -three departments sharing it indicate that the marginal

value products of that resource in its alternative uses have been

‘equalized, a requirement for optimal efficiency as measured by the

‘college-level objective function.

We will not carry the interpretations further. Our main
purpose has been to show that fairly complicated programmipg models can
be broken down into smaller components; their mechénisms can be
approximately elucidated, and their results mﬁnitored at least rougﬁly‘
by direct reasoning. In a real application of the Department A (and
éollege) model, the.dean and the department chgirmen should each have
a good deal of intuitive jngment and experience to aid thew in

interpréting the results of the computations.
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iﬁvfs Appendix 1

i A Model for Allocating a Given Faculty

é among Alternative Teaching and F  arch Assignments

éy The modél can be defined in terms of (1) a set of constraints

é which must be satisfied and (2) an objective functioa the value of

5 which is to be maximized subject to the constrainté. We assume that

é commitments are expressed in terms of units such as "teaching a three

z credit-hour course for one quarter,' and that the amount of time éf

% each faculty member which can be allocated to satisfy the commitmehts

f is measured in the same units. Thus, if the 1§h faculty member were :
% responsible for teaching three three-credit hour courses each quarter, ]
§ or nine such courses for the academic year as a whole, a:l = 9, Simj

é ilarly,lif the jth commitment consists of offering two independent

% sections of a specified three-hour course in each of three quarters,

% bj = 6, If the ith faculty member is assigned to teach all six of

% these offerings of the jth course, we have xij = 6, and the ith faculty

é member is still available to teach thrne other courses, presumably one ' g
é in each quarter. | y g
% Suppose we have a department with n faculty members and m differ- é
s 3
% ent sorts of commitments to fulfill. The constraints faced by this g
i department can be written as: |
: n .
§ (1) jgl xij < a; i=1],2, ..,, n E
3 4
if% }
;;} - 83 - ;
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(3) Xy 5 20, i=1,2, eoe,mj j=1,2, ¢ce, m

The type (1) inequalities insure that the total of the alloca-

tions of each faculty member's time does not exceed the amount avail-

able for such allocation,

The type (2) equalities insure that all of the commitments sare

- -

The type (3) inequalities preclude negative assignments (e.g.,
assigning some faculty member to teach a negative number of sections

of some course). A '"negative assignment'' makes no sense in this con-

text and would be avoided on pragmatic grounds if the problem were
being solved by hand by someone who knew what the numbers signified.

I1f the problem is programmed for a computer, however, the context is

b e <3

lost and the restrictions that % 4 2 0 for all 1 and j must be ex-
plicitly included in the program.

The xij's represent the amount of the ith faculty member's time

allocated to the jth commitment. The ai's indicate the number of units

of the ith faculty member's time which is available to the department,

The bj's indicate the number of units of faculty time required by the

jth commitment.

n m :
If ¥ a, < T b, no feasible solution exists, i.e., the depart-
i=1 1 j=1 ]

ment is either overcommitted or understaffed.
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n m n
1If ¥ a,2 T b,, feasible solutions exist. If % a >
m i=l 1 =1 ] i=1 1
121 bj’ the department is overstaffed or undercommitted. If 121 a, =

m
_§1 bj’ there is a balance between staff and commitments. In that case
the constraints have the same form as the constraints of the so-called
"transportation model" and the model can be solved by any of the methods

1/

applicablé for the solution of such models.—=

A. The Cbjective Function

Nonlinear objective functions may be reasonable in some cases
but linear objective functions are usually more desirable for this

model. If the objective function is linear and the ai's and b,'s are

j

all integers the solution vector will, under most methods of solving
the model, be linear. A linear objective function could be written as

n m
LT 2 ec,.x,.
i=1 j=1 1) iJ

?

1/ The "transportation model' specifies that there are a., units of a
product at the ith shipping point (i =1, 2, ..., n) and that b,
units of the product are needed at the jth destination (j = 1, J2,
ceey M); also

n m

X a,= Z b, .

i=l 1 =1 ] ]
Given the transportation cost, Cj1o from each of the n shipping
points to each of the m destinations, the problem is to allocate
the supply at each shipping point to a destination or destinations
such a way that (1) all destination requirements are satisfied and
(2) the total transportation cost is minimized; that is,

LI
j=1 j=1 1J *1]

is a minimum, where X, 4 is the number of units of the product
transported from shipping point i to destination j.
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where cij is a measure of the value per unit resulting when, for ex-

ample, Couirse j is taught by Faculty Member i and xij is the number of

.

units of his time assigned to Course j.

PRI
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Appendix 2

Models for Computing Cptimal Decisions : :
over a Sequence of Years: Recursive Programming ﬁ
and Dynamic Programming | ]

We will outline a recursive programming model in some detail

and add briefer comments about a dynamic programming model.

A. Recursive Programming Models

m ;
*) max B Cip Xge E
subject to é
- < : =
(5) a-8x  ,8x 50 +B‘)x1.t_1 , 1=1,2, cis, m
m < - m
(6) 121 aijx"t = (1 -I-d) 151 aijxi t 1 » j = 1, 2, eeey k °

The objective function weights, the cit's, are usuiully dependent
on past net prices. In many cases they are set equal to last year's
net prices, (The "net prices” for year t are equal to year t's ocut-
pPut price per unit minus the cost of the resources required to pro-
uduce one unit of output.) ‘

The type (5) constraints insure that the activity levels chosen ]
in year t do not differ too drastically from the activity levels in :
year t-1, The_Ei's and g;'s (both of which are greater than zero and

usually less than one) are the "flexibility coefficients." The Ei and

3
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the-§i asgociated with any activity i do not have to be equal. For

example, we could have

(5.1) (1 - 0.10)x S (1 +0.20)x

S
i’t-l = xi’t i’t-l

signifying that activity i in year t could not fall more than 10 per-

‘cent, but could rise as much as 20 percent, from its level in year t-1,

The type (6) constraints limit the incresse over last year's
levels in the use of certain resources. The ;3°s are "flexibility
coefficients" for these resources. Examples might be various kinds of
college building space or legislative appropriations for specified pro-
grams, |

In the modél described by expressions (4), (5) and (6), m equals
thie number of activities, K equals the number of résource constraints,
and aij indicates the amount of resource j required to produce one
unit of output.

The model used in Section IIX, pages 45-50 of this report could

be written as:

- m m 2
™ max 121 it *ie T 121 di(xit B xi,t-l)

o

subject to

L n m
3 - T
® 121 131 *1e = bj.t+1.-1_ sz =1 13l *i,e-141

j=1’ 2’ oeo’K

1=1,2, eaep 0
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e: L ' 2
i (9) X 2 0

where a K
4 K 121 j§1 aijlvj,t-l-Pi
.i (10) Cip = jzl aijlvj,t-l - E ﬁ%’ , v

1 | 1= 051 f13173,e-1

K
z . .
j=1 a131 vJ,t~1

3 , The type (8) constraints are resource constraints which 'insure
. that the deciéibns made in year t do not require more resources than
will be available in year ¢ and future years. Ordinarily, the con-
straints corresponding to future years will not be needed (i.e., the
restrictions corresponding to 1l = 2, 3, ..., n will not be needed).

In the present model, m equals the number of activities, K equals
p the number of resourcés for which constraints are included, and n
equals the number of-periods required by the most lengthy production
process. Further, aijl indicates the amount of resource j required

during the 1lth period of the production process in order to produce

; one unit of output i; vj,t-l is the ''shadow price" obtained in the

; t-ith year for the jth resource; and di is the weight associated with'
E déviations in the level of activity i for year t }rom the level of

; activity 1 in year t-1.

; The numerical recursive model actually used is as follows:

4
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sub ject to

az)
(13)
(14)
(15)
(16)

17)

- (18)

(19)

(20)

(21)

17.5x%

1,

. <
"Xor t X3¢ | = %y t-1

N

- - 2-» ' - - 2
max g X, + €oe Xt 0.2(x1t xlt-l) 0.2(x2t sz_l)

W

c X " sy | - --1'47.5x1":"1

X ¥ 0.6xSt 245::6t 140x7t $ 17'5(x1,t-2+“1.t-3)

- 5 s
17.5% + 0.4x5t A s 0

3¢

9% -18x S -12(x

2t 6t - 7?*7t‘ . 2,¢-1)

A

x6t + x7t 6

A

30

Ty
-}

0 121’ 2, ooo,'7

number of freshman students admitted in year t.
number of gréduate students admitted in year t. T
number of teaching assistant employed in year t:
number of undergraduate sections taught solely

by faculty members in year t.




number of undergraduate sections tasught partly by

graduate students in year t,

Roe = effective number of faculty members assigned to
teach seven sections oi undergraduate courses and
one section of graduate courses per faculty member
per year in year t.

X9p = effective number of faculty members assigned to
teach four undergraduate sections and four graduate

sections per faculty memb2r per year in year t.

Constraint (12) insures that all fresﬁman and sophomores are
téught the required number of courses.

Constraint (13) insures that juniors and seniors receive the ré-
quired amount cf instruction.

Constraint (14) insures that the amount of graduate assistant
teaching required does not exceed the amount available.

Constraint (15) insures that graduate students.feceive the re-
quired amount of instruction.

Constraint (16) insurés that the number of teaching assistants in
year t does not exceed the number of graduate students.

Constraint (17) insures that the number of faculty members allo-
cated does-not exceed the number available.

Constraint (18) insures that the number of graduate asgistants

does not exceed the number allowed by the budget.
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Constraint (19) insures that the number of freshman admitted

does not exceed the number seeking admission.
Congtraint (20) insures that the number of new graduvate students
admitted does not exceed the numberlseeking admission.
Congstraint (21} insures that numbers of peraqns'(xlt, Xypr Xyg
, and x7t) and of sections (xat and xSt) in each category will bg

X6t

nonéhegattve--i.e., positive or zero.

B;_ Dynamic Programming Model

The model used in computing the admission £1gutea in Table 12, E

page 52 of the text is as follows:

(22) " max % (clcxlt + c2tx2t) 
| éubject to |
(23)  xy g PR S Xy b X ;
(24) X} ¢-3 + xl,t-z + 0.6x5t +x,. + X5, $l§4
(25) | bxy oy + 3y - éxSt < 36
(26) Xy, S 30 | | o - : -
(27) Xy, § 7 o - I | .
(28) X) -3 < 21 i" x ' ,' - o .f %
(29) X) gep 5 22 .
-9 - A
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(?0) xlot'z 23

: s
(31) %) 1S 7

32)

X, 0, i=1,2,3,4and5 .

Constiaint (23) insures that ail frcshmen and sophomore students
are taught the required number of courses.

Constraint (24) insures that juniérs and sénid:a_tecétve the re-
quired amounit of instruction.

Constraint (25) insureé that graduate stﬁdentplreceive the re-

quired amount of instructiom.

Table 16 shows the complete model in matrix equation form, with
solutions for thé activity lgvgls, the shadow prices, and the objective
function, 'Essentially the same iﬁformatiop wai presented in Table 13 .
of the test in a more expository form,

The’concentration of blocks of elements on the diagonal of :hel.
activity matrix with additibnal elements bglow :he diagonal"ig char-

acteristic of dynamic programming models.
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- 93 -~

T A SYIETOA Y AR AT e TR "y



SR Epdd

R AT AR TR RIS e S S SN R e ¥

..( N TR R O T
et RELKEFGELERATL L norty. et ks R RS R

(R S R R B e e R e R e S

& S . € v s - 0 L w% % € 0 &t - .06 € . T 1T 53T
o - : . ‘ - sTaalT

. - . | £31A730V

0 -t . o0E 8 - 0S L og  8m 0s L og /80

R R TN .

S i ey e e

1 . 1 . 1.t o€ o= oIz /€.
o | o o o9

. : - . o !

o | - o1r

62
61 !
ef
.89
8
8r
Ly

ey
90 &
B - - - or
o <2
1. | - . | | o e
0°¢ . L 0y . . - . €9
o..ﬂ- o-.H ' oo.ﬂ . ' . . . v mh.
‘g~ . o . o'y 29
I . , .

(ol e
- ™

0°1
0'1- O0°1- C0°T 0°'1
o | - 0°€d'y
01T 9 0’1 0°1
0°1- 0°1- 0°'T 0°1
0°'z 0°¢ 0’z 0°¢ 0'z 0°¢

£l ESH £S4d ¢l ¢l ¢l CSH ¢sd T4L 1L 11 ISIKOSKk 18¢ 0sd 1S4 ¢st

SuoT3iIniosS YITM ‘wmioj uorjzenbd xTarel ur JoponW SurumeaSoag oSTureuig ‘91 91qel




0t 8y

0°1

01

0°1

0°'1

91

0y

0°¢
9SKH

o

0°1

01

01

0°'1

0°¢
9S4

Gyl

oo

L ]
=i =i
]

6L

DR IS ST

cl

.0.
0°1-

61

o'y

o.n .

0°¢
SSKH

0o¢

o.ﬁ -

01

0°1

o°¢
¢S4

8v

74l

Qo

- -

R R A § 15 2759,

72

08

0°t-

71

HRIA S S B s

o0°¢

0°¢
#SK

ot

o't

LR

0°¢

z 8,31,

8%

00

- o
'
™
(L

19491
£3TATIOV

/4an

/e1

019
-o1n

o1r

62
60
6L

il

FAS

ST, ey pwrst e e

e

PR L LS R
o SETCNE P NSO

RAEEETE AP SO PEAN VE

AT

SR

gL B URE)

Ly

e s atainade il et o nc e 5 v

SR

‘
3
3

B
>

e I AR S T AP Ay BT

Lisa il

oS



011

0°¢

OTISK

8y
9z
01
0°¢-
0°t
01S€  6dl

6L

0s

61

0°¢

6SK

11

0°¢

6S9

84l

0S

81 81

9 %C
L
1 [
0°t
0%y
0°'1
0°¢ -
0°1
}
0°¢ 0°¢
8SH 8s4d

v T 0S
8y 0¢<
0°¢- |
0t 01T 9
0°'t- 0°1-
41 L1 11

L 8,3%,

S19A91
AITATIOV

N

1 /91

0y 89

0°¢ $,3T

NI SRR WEG fa e e imrreare e £ —nel

4'



5 \ { .
H ﬂ . H m—u.ﬂun.
- ‘ | o “ - ST9A3T.
\\ . . | £31AT30%
8Y /en
/91
1€ " 0 019 9 s 0°¢- o019
%6 ° O 10 78 = 0°1 0°1T o010
%% ° 0 O1f 0 s 0°1- = OIf :
ST ° O 69 9€ s 69 |
GL *° 0 60 8 s 60
S 0 6r 0 s 6
€€ ° 0 89 9 s 89
00 * 1 A %8 s en |
16 ° O 8 0 s T
€1 ° 0 Lo 9 s L9
oy ° O L0 78 = L0
o% * 0 LT o s (r o
1€ ° 0 99 9 s 92 3
6z 1 9n %8 = on
G ° 0 of 0. = 9r
ST " 0 co 9 s ¢
SL * O sn 78 s cn 1
GL * O Iy 0 s sr 7
€€ ° 0 9 9 = o> ¢
00 " 1 90 v8 s v
09 "0 yr 0 s oo
2T " 0 €9 9 s .€9
9 0 £n 78 s en
o7 ° 0 ef G S (X
8¢ * 0 79 . 9¢ 'S 4 B
8 ° 0 Ayl %3 S zn
S8 O r 0 s r
0 19 9 s 19
o 10 %8 s 10
0 1r 0 s ir
is,3T
9
(s@d1ag mopeys) n q O1¥1 01l
O




Appendix 3

A Two-Level Decision Model: Interacticn between
Dean and Department Chairmen in Planning Resource Allocation

Under a two-level decision-making scheme each department may be

faced with a problem of the form (for the ith department):

(33) | max.jE1 TR
sub ject to

1

< =

(34) j§1 ain*ij S biK ’ K=1,2, ¢eo, 8

m, .

: \ < = '

(35) v jEl di_]lxi_] = uil ’ 1 1, 2, ceey L
(36) xij 20, i f 1, 2, ceey m,
The cij's are objective function weights, the xij's are the activity
levels “or activities of the ith department, the ain's and diil.s

are technical coefficients which indicate the amounts of resources K
end 1 used when the jth activity (of the ith department) is operated
at the unit level. Further, t equals the number of different resources

allocated by the college dean, s, equals the number of constraints

i

faced by department i with respect to resources which are specialized

to it and are not useable by other departments, and m, equals the num-

i

ber of activities available to department {i.
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éﬁé Constraints (34) are constraints on resources (or outputs) used ?
(or produced) only by the ith department. f
Constraints (35) are constraints on resources (or outputs) which
could be used (or produced) by other deparﬁments and which are alloca- ]
ted by the college dean. ;
Constraints (36) reflect the fact that negative activity levels %
ave not parmitted. | §
The problem faced by the college dean has the form: -
(37) max g ;i C,. X,.
i=1 j=1 1j "1ij
subject to E
o | , 2
(38) igl u, s b1 > 1=1, 2, .¢e, t ]
and.subject to rgstrictions (34), (35) and (36) being satiafie& for
all departments. | |
Here, n equals the number of departments in the college, u.y in-
dicates the.amouht of the lth resource which is allocated to the ith
department, and b1 indicates the amount of the 1lth resource which the
college dean has available for allocation. |
The éonstraints,{38) insure that the totals of the allocationé . ' i
made by the college dean do not exceed the total amounts available. j
The decision 2rocess that could be used to obéain an,optimum,éet | %
of quotas consists of several phases each of which can be.deacfib&d é
| - 99 - - | |
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by describing the Nth phase. During the Nth phase the college dean
1/

solves a problem of the form:—=

N [ 5 £ wl
(39) Z = min 121 blv1 + 21 Wy
sub ject to
(40) é uK v, +w, 2 rK i=1, 2 n
1=1 i1 "1 G { s 25 eoey
K = 0’ 1’ 2’ ..6’. N-l
(41) V1 20, l=1, 2, ¢eep t

The solution values are designated as V?, l1=1,2, .ve., t, and wg,
i=1, 2, «eep n. The v?'s are the college dean's current estimates
of the shadow prices (marginal values) of the resources which he allo-

cates. The w?'s are his current estimates of those resourees (and out-

- put requirements) which can only be used (or produced)by the individual

departments.

He reports the V?'s and w?'s to the departments. They solve

problems which (for the ith department) have the form:

n t

N | N N
= - ' -
(42) zi max [jEI cijxij 121 “11V1] w,

subject to constraints (34), (35) and (36). 1If Z? is greater than

zero the x?j's and u?l's are set equal to the solution values of the

1/ The <iual of this problem is ordinarily easier to solve and can be
used to obtain the solution to (39) through (41).

- 100 -

T e XIS

et 45 S A T B e A AL A o ot v e esanss K o s eyt 4500 ey S



m
by setting it equal to I

i

x,.'s and u,.'s. They also then compute e
N

N : N , ‘
ijxij and report the values of the u;,'s and of ry to the college dean.

N
1f Zi

the college dean.

c

is equal to zero the ith department reports only this fact to

In order to initiate this process it is necessary to know
initially (at the beginning of phase 1) same»feasible'values for the
ugl's and r:'s; Ordinarily this information would be known by the
college dean or could be obtained by modifying plans (allocations) for

previous periods. If these values canﬁot be supplied by the college

‘dean the decision-making process can be modified for as many phases'as

are requited to obtain a feasible solution. The details of this mod-
ification can be found in McCamley (15., pp. 106-107). Essentially

the modification amounts, for the'college dean's part of the Nth phase,

to
[ £ £ w,]
minimizing 151 blv1 + i1 wy
sub ject to |
é K > 0 i=1l, 2, ¢eep n
u,,V, +w, 2 ’ . '
=1 111 i K=1’ 2’ ceey N.l
0§ V1§ 1 ’ 1 = 1’ 2, eeey t
wig -1 . i= 1’ 2_’ ssey NN

The departments react as before except that Zi

' N
ma*_[ fgl uill - w,

subject to constraints (34), (35) and (36).
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The decision process continues until at the end of some phase,

say the Mth, Z? is equal to zero for all relevant i. The college dean

would then solve a probiem of the form:

| M-1

M K K
43 2" = max [ Z 7 re Aol
(43) im] k=1 &+ 1

‘gubject to

n M-1 XK Kg | |
(44) ' 1§1 K§1 il }\1-— bl | 1 - 1’ 29 seey

=1,>, | i'l,Z,....l\

- (46) x‘;g 0,  i=1,2, eeen, K=1, 2, oo, M-l

(This, of course, the dual of the Mth phagse version of the probleﬁ de-
fined by (39) through (41) and theréfore the solution would already be
known to him.) Designate byi?'s ;he'values of the A?'s which solve |
(43) through (46). An optimum set of qubtas could,thén be obtained by
setting

M-l K XK for 1 = 1, 2, eosey N

u, z
11 K—l il i Snd l = 1’ 2’ ceey t

The procedure described above must be modified if unbounded sclu-
tions (Z?-—% ©) are obtained by any of the departments at any stage,

This modification is described in Dantzig ( 7 , pp. 453-454).

- 102 -

ol el (g e i e S S S S e e

IERAALE




% Q@ﬁ‘ A. Tabular Presentations of the Model and Its Solution

g Tables 17, 18 and 19 present the models for Departments A, B and

% C respectively. The first two or three rows in each model represent

% . the college~level resources for which optimal.interdépartqental allo-

g cations are to be determined.

. | In the'Départment Aymodezl,' the xAj's have the following ﬁe&nings:

; Xp10 X0 and X,3 are the activity levélo'whtth.tdrtespond»to

% the research activities. |

i Vi thé‘number of M.S. degreés pér year awarded to otddenta

z broviding their own support, k

% xAS =  the number of M,S, degrees per year awarded to studentp ;
who obtain financial support by vorking as rcaearch E
.agsistants,

%26 '# thg.numbgr of M,S. degreeé ber year awarded to students

; _ whd opta;p financial support by working>q0 tedthing'd

2 assistants,

; Xpg = the numbgr 6f undergraduate sectiont ﬁe: year tdught»

solely by faculty members.

X8 = the number of ‘undergraduate sections per year taught
j°1“t1Y by facylty members and graduate teaching | - .55
assistants, 4
X,9 = the number of graduate sections taught per year. :
- 103 - ]
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P,
B e
I B
N g

lk;‘ | - Xp10 = the number of units (section equivalents) of faculty

time devoted to thesis supervision.

. ‘ i 1
xAll’ X)12 and X,13 are the activity levels for the variou§
types of faculty time allocations among research, grad-

uate teaching and undergraduate teaching.

In the Department'n model, the xBj's have the following mean-

ings:

Xg1 and Xp, are the activity levels for the research activities.

Xpg = the number of M,5. degrees per year avafded to students
providing their own support. |

Xp4, = the’number of M.S. degreeé per year awarded to stu-
dents who are also teaching assistants.

xBS,'xBG and.xB?‘are the numbers of each of the various types
of sections taught per year. -

Xpg = the number of units (section equivalents) of faéulty
time devoted to thesis supervision.

Xgo® Xp10 and Xp11 are the activity levels fo? the faculty timg
aliocation activities (allocatiocns among research,

\ | | graduate teaching and undergraduate teaching).

In the Department C model, the xcj's have the following meanings:

Xo10 Xop and‘xc3 are the activity levels for the resecszrch

activities.

- 107 -




T . T e T T 0 et g ot - gy
Rk Sk 4 B T A A . . B . ' B R B

X4 = the number of M.S. degrees per year awarded to students
pProviding their own support.

X.5 = the number of #,S, degrees per year awarded to students
who are also research assistants.

X6 = the number of M.S. degrees per year awarded to utudents
who are also teaching assistants.

Xo70 X8 and xc9 are the.numbers of each of the various types
of sections taughﬁ.

X.j0 = the number of units (section equivalents) of_facultyu
tiue‘per year devoted to thesis aupervision.'

..xcll, xc12'and xc13 are the autivity levels for the faculcy

time allocation activities (allocaticas among research,

graduate teaching and undergraduate teaching)

Table 20 combines the models for all three departments. The top

eight rows involve the tiiree resources for which optimal allocations

among the three departments are to be computed by ‘the two-level decision

process. The college dean faces one major restriction, U3, a total

teaching budget of $220,000 assigned to him by the universgity president. .

The.other two restrictions, Ul and U2, are in a sense self-imposed by

- the college dean, who uées their suballocatioué among the departments

as tools for balancing up or equaiizing the marginal value products
of the graduate teaching programs in the three depa tments.
Table 21 displays the values of key magnitudes (objective func-

tions, shadow ptices and tentative quotas) at sucéeauive rhases of the
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9 Table 21. Two-Level Decision Model: Values of Key Magnitudes (Objective Functions,
Shadow Prices and Tentative Quotas) at Successive Phases of the Com-

munication Process»between the College Dean and Deggrtmgnts A, B and C
: Phase Number (K)

b Variable 0 1 2 3 4 5 6 7

| ~ COLLEGE DEAN

0.10 « 04 .06 .05 .06

0.05 .05 .09 .08 .08

W

QORI R

Z:Klower est.a

Z:Kupper est.

0 1.12

12 . 70 "'50.75

- 10.48 -92.59

1.07 -77.85

25.28
63.65

24.25
166.72

0.25

13.33

-6.11
4.30

53.37
63.65

.78
-20,28

-52.73
'32 041

57.82
59.07

1.53
'61 026

-116.55
-86.77

58.21
58.60

1,42

-55010

-106.64
-78 033

58.29
58.51

1 .45

-56003

-108.96 -

‘80.48

58.38 .
58.38 .

DEPARTMENT A

>R PR PR

3]

N =
> >
Nw?ﬁ

-

=
ot

=i

o
wzwzgxwmw%

N
(=

12,70

. -166 062

156.33

56.63

10.48
14,7
'149036

92.0

51 088“ 20077

285 027 '82 021

85.58 23.41

174.2¢ 55.29

39.18 9.57

80,64 13.27

133.0  16.2
443,32 -86.00
297.58 88.88

70.16 6,29

17.75

"194 034‘

17.32

57.97

7.29

20.75
-152.18

23.32

57.97

0.88

DEPARTMENT B

12.51

16.2
-196.29

95.13

3.“
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13.26

16.2
-141 . 18
92.01

0.37

17.38
-133.59

16.10

55.29

0.27

12,32

14.59
-103,08
89,22

0.12

g I L R Tt sy st e & el e e Yoy WU T
R A A R e s e e e

20.38
-91.44

22.10

55.29

0.22
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Table 21 ( continued )

Phase Number (K)

Variable » 0 1 2 3 4 S 6 7

—— Y . o " M

DEPARTMENT C

1.07 34.20 25.21 25.58

2.14 48.15 28.43 30.12

70.45 100,02 71,90 72.28

. 33.13 22.51 0.12 0 : 0 0 -0

a/ The lowest estimate is equal to ZK for Phase K.

b/ The upper estimate for Phase K is given by
F
. K K K K
mlnLZ +ZA+ZB+ZC]
l1<hg£K
v

- 114 -

SR,

B S o e R e e T R e RO

e . L - . ). N . C . « : e N P I e e LR A v bR 3 AT SRk BN e
R i S e s e e ) o M 0 A0 s i e e Y B gl e B R e pl i kg gt L



AN SRS LS T AYY )

communication process between the dean and the department chairmen,

Finally, Table 22 displays the activity levels (xij") and shadow

prices (vij's) resulting from the optimal solution (end of Phase 7)
of the overall college model.
In Table 6, it should be noted that the activity levels (x 5.

x,. and x_.'8) are associated with the columns of the corresponding

Bj Cj

department models and the shadow prices (vAj’ v

|
Bj and VCj's) are
agsociated with the rows. There are 37 columns (activities) in the
three departments and there are 38 rows (shadow prices). The near-

equality of the number of rows and the number of columns is a more or

less coincidental byproduct of our attempt to keep the model small.

We could,_for example, bave included a very large number of alte:natiye
class sizes in each department model, with each class size constitufing'.
‘a separate activity. This would have led to perhaps 100 possiblie
activities {cclumns) but the number of restrictions (rows) might have

3 ‘remained at 38, However, not more than 38 activitieglwould'ﬁavg

appeared at nonzero levels in the optimal solution.

&
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